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1 Overview

This document is the final report for DARPA contract # F30602-00-2-0503, entitled “Activelets:
Light Weight Architectures for SOF Planning and Scheduling.” As part of the Active Templates
program, this project aimed broadly at delivering continuous planning and scheduling capabil-
ities to support crisis response for Special Operations Forces. The principal accomplishment
of this effort has been the development of Comirem (COntinuous Mixed-Initiative REsource
Management tool), an interactive planning/scheduling system designed to more directly match
the iterative, user-centered nature of planning and scheduling in practical domains by providing
the means to represent evolving scenarios, define and reuse operational templates, maintain
problem consistency in response to execution monitoring and information updates, and detect
inconsistencies and signal appropriate alerts in response. This report describes the design of
Comirem and summarizes the capabilities that it provides.

A significant historical limitation of planning and scheduling technologies is that they tend
to be designed as batch-oriented solution generators, where users cannot directly guide solution
development and attempt to achieve desired results indirectly by manipulating system inputs.
This user-interaction model and system design perspective is at direct odds with the characteris-
tics of most practical domains, where requirements, capabilities and plans evolve incrementally
and in parallel over time, and users invariably possess knowledge that should override aspects of
system models. Furthermore, the need for reassessment and revision continues as the plan is ex-
ecuted and results deviate from expectations. In practice, planning and resource management is
fundamentally an iterative process, and attempting to support this process with a batch-oriented
solver results in an awkward, indirect and inherently inefficient problem-solving cycle.

Comirem is designed from an alternative, incremental perspective. It promotes a graphi-
cal, spreadsheet-like model of user-system interaction, wherein resource assignment decisions
can be constrained, refined and revised opportunistically as information becomes available, as
specific planning choices become apparent, as execution results dictate, or as circumstances
otherwise warrant. The system provides a range of support for a user-driven resource manage-
ment process. At any point in the planning process, the system computes and maintains a basic
set of resource allocation options for any given task in the plan. As task requirements and re-
source capabilities are adjusted, or as specific resource assignments are made, underlying time
and resource propagation techniques are applied to update the feasible options for other tasks,
to identify forced decisions and to detect infeasible solutions. The user can invoke an auto-
mated scheduling capability to establish overall resource feasibility of a plan, and this capability
can be coupled with an undo mechanism to explore the consequences of various requirement
and/or resource availability changes. All interaction with the system is in terms of a high-level
domain model, which shields the user from the details of the system’s underlying search model.
Comirem has been applied initially to the domain of Special Operations Forces (SOF) planning,
where the use of transportation assets, taskforces and equipment must be managed over time.

The Comirem effort descends from earlier work within the Intelligent Coordination and Lo-
gistics Laboratory in the Robotics Institute at Carnegie Mellon University involving the AMC
Barrel Allocator [Becker and Smith, 2000], a tool for day-to-day allocation of aircraft and air-
crews for the United States Air Force that is now part of the operational planning system in
the Tanker/Airlift Control Center at the USAF Air Mobility Command. Whereas the AMC Barrel
Allocator focuses on large-scale problems with more narrowly circumscribed types of alloca-
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tion constraints, Comirem focuses on smaller-scale but more ill-structured types of allocation
problems.

The design of the Comirem planner reflects several basic principles that we believe are fun-
damental to collaborative, human-computer interaction in practical planning domains:

� Adjustable Decision-Making Autonomy

One key to effective collaborative planning is a decision-making process that allows the
degree of automation to vary according to problem solving context and user preference.
The Comirem planner allows the user to inject herself into the decision-making process at
different levels of granularity. At the lowest level, the system takes responsibility only for
proposing and implementing resource assignments for individual elements (or activities)
in the plan, and the user retains control over resource assignment decisions. However,
even in this (largely manual) mode of operation, the system is frequently playing a quite
substantial role, in determining the consequences of all relevant constraints on user allo-
cation decisions (e.g., the overall duration of a move, given that multiple trips are required
and aircrews must rest during the course of the move). The user is free to make specific ad-
justments to an activity’s resource requirements (e.g., adding another aircraft type to the
set of possible allocation options) or to override specific usage constraints (e.g., reduce
computed duration constraints due to knowledge of a strong tail wind) without carrying
along and anticipating interactions with all other constraints. In other decision contexts
the user can delegate increased decision-making scope to the system. The user may choose
to manipulate constraints associated with larger plan fragments (e.g., plan threads), and
request feasibility checking and/or scheduling in response to assess consequences. At the
end of the automation continuum, the user can request the construction of a fully sourced
plan, in which case the system constructs a schedule according to user-specified goals and
preferences. Through iterative generation, retraction and adjustment of (sets of) resource
assignments, system planning and scheduling processes support collaborative reconcilia-
tion of planning objectives and desired actions with available resources.

� Translation of System Models and Decisions

A second key to effective collaborative planning is an ability on the part of the system to
communicate elements of its internal models and solutions in user-comprehensible terms.
In Comirem, this is accomplished through a combination of graphical visualization and
model-based explanation techniques. Visual displays are used to compactly convey vari-
ous decision implications (e.g., how many trips are required if this type of transportation
resource is used, from where will various resources be sourced, what will be the overall
makespan of a particular movement activity) as well as potentially non-obvious allocation
constraints (e.g., MOG limitations). In other advice-giving contexts, internal system repre-
sentations are mapped to user-level actions through the use of abstract domain models.
Comirem’s higher-level “activity-resource” model allows the system to impose structure
on the distance constraints involved in a “cycle” that has been detected in the temporal
constraint network (i.e., characterizing them as interdependent sets of activity durations,
inter-activity precedence relations, etc.). This structure then provides the basis for identi-
fying and proposing relevant, user-level constraint relaxation actions that make sense for
resolving the conflict.
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� Incremental Problem-Solving Procedures

A third key to effective collaborative planning is a problem-solving process that promotes
incremental decision making. In complex, ill-structured planning domains, all relevant
constraints are generally not known at the outset, and those that are can frequently
change as planning and execution progresses over time. Hence, planning proceeds with
whatever information is available, decisions are made on the basis of current information,
and as additional information becomes known, conflicting decisions are appropriately
revised. Within such a continuous planning process, the ability to maintain a sense of
problem-solving continuity to the user is crucial. In arriving at a given plan or schedule
(either partial or complete), the user has invested time and energy in understanding, as-
sessing and validating various component decisions. The introduction of new or changed
constraints should not arbitrarily result in wholesale changes to the plan. The system
should instead act to preserve prior decisions wherever possible and meaningful. The
Comirem planning framework is designed generally with an incremental, change-based
problem-solving process in mind, and furthermore allows the user to explicitly manage
the scope of allowable change in specific decision contexts.

The remainder of this report is organized as follows:

� Section 2 provides an analysis of the SOF planning domain, highlighting the issues that
have shaped the development of Comirem.

� Section 3 summarizes the basic components of a Comirem domain model, including rep-
resentational issues and the conceptual model, and describes the Comirem scheduling
engine and system architecture.

� Section 4 describes our efforts towards integration with other applications in the SOF-
Tools environment.

� Section 5 presents two SOF-related demonstration problems that have driven both the
design, implementation and evaluation of the Comirem system.

� Finally, in Section 6, we discuss some potential extensions to the Comirem system and
scheduling model.

� Three appendices are also provided:

– Appendix A presents a full description of the XML specification for all Comirem input
data files.

– Appendix B includes a user’s manual for the Comirem web-browser-based GUI.

– Appendix C presents the abstracts of all research publications funded under this
project.
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2 Domain Analysis

The current focus for Comirem is the Special Operations Forces (SOF) planning domain, which
is characterized by a very fine-grained representation of activities and resources, a relatively short
temporal horizon (typically a number of hours or days), and a highly synchronized environment
where multiple mission threads must be coordinated as part of an overall mission (e.g., air sup-
port provided for the duration of an assault on a target). In addition, plans and schedules in
the SOF domain must be developed rapidly on the basis of available (and often incomplete)
information and then continually refined and revised as new information is accumulated and
execution circumstances necessitate change. Execution typically commences before planning is
complete and the dynamic nature of the environment requires a tight coupling between exe-
cution and (re)planning processes. Plans inevitably do not execute as expected, so there is a
constant need to be able to quickly identify critical constraints and decision tradeoffs, and for
rapid evaluation of alternative recovery options. The problem is further complicated by the fact
that planning often takes place in a distributed fashion, by mobile decision-makers with limited
computational resources and under executional duress.

Additional features related to the flexible nature of plans in the SOF domain are relevant to
the design of Comirem:

� Activity requirements often include a choice of multiple resources or capabilities, and the
selection of a particular resource or capability may impact decisions elsewhere in the plan
by either restricting or relaxing remaining scheduling options.

� Resources may be aggregated and disaggregated over time as a means of grouping per-
sonnel and equipment into functional teams (e.g., taskforces).

� Resource constraints become known incrementally. As knowledge of the problem domain
develops (e.g., the status, location and performance characteristics of resources), the sys-
tem must be able to incorporate and adapt to changes in the underlying resource model.

� Resources may themselves be treated as cargo and transported by other resources, en-
abling the positioning of assets throughout the theater.

� Certain activities (e.g., those involving the sourcing of assets) may only be required in
specific situations, whereupon their durations are dictated by the present circumstances.
These derivative activities retain zero durations when not required.

� An activity’s resource requirements may warrant multiple trips by a resource or resources
to perform a task (e.g., the transportation of troops and equipment). Sibling activities
(i.e., clones) are instantiated automatically on demand to represent situations where the
cargo manifest for an activity exceeds the capacity limits of a single resource.

� Sequences of activities can be grouped into threads and assigned resources (e.g., task-
forces) collectively to better reflect SOF mission-planning approaches.
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3 COMIREM System Overview

Comirem supports both incremental and automatic scheduling in logistical environments. In
this section, we present an extensive description of the primary features and components of
Comirem that contribute to delivering its various scheduling capabilities, focusing on the con-
ceptual model for representing logistical scheduling domains, the flexible-time-bounds sched-
uler and mixed-initiative techniques for resource management. The overall design of Comirem

reflects the following themes:

� Flexible user control of scheduling automation:

The system supports both incremental (i.e., user-driven) and automatic (i.e., system-
driven) commitment/decommitment of resources. Allocation options are continuously
updated by the system to reflect the current state of decision-making and provide an up-
to-date assessment of resource availability, and an undo mechanism supports a what-if
style of interaction that facilitates consideration of alternative task-allocation decisions.

� Constraint and solution visualization:

To provide further support for user interaction, the Comirem GUI highlights the prop-
agated impact of constraint tightening and relaxation (e.g., owing to the manipulation
of temporal bounds) and changes in resource availability (e.g., owing to the commit-
ment/decommitment of resources). A spreadsheet display metaphor is utilized through-
out to provide direct access to relevant problem constraints and visualization of the im-
pact of their modification.

� Tight interplay between scheduling and planning decisions:

The distinction between what is generally thought of as a “scheduling” decision as op-
posed to a “planning” decision is becoming increasingly transparent. Planning decisions,
like how to perform a task (i.e., the sequence of activities required to achieve its implied ob-
jective), are directly influenced by the typical scheduling decisions of when to perform a task
and which resource(s) to use, and vice versa. Comirem relies on an explicit and declarative
domain knowledge base to make all relevant information available to the user and the
system throughout the entire problem-solving process.

� Lightweight component capabilities:

In a nod to the more lightweight client/server model, Comirem is implemented as a stand-
alone scheduling-engine server (written in Common Lisp [Steele Jr., 1990]) that interacts
with an independent web-browser-based GUI client to deliver incremental and automatic
scheduling capabilities to the user and set the stage for possible future multi-user interac-
tion.

� Interoperability:

The use of XML [Harold and Means, 2002] as the input/output data specification format
facilitates interoperability with a wide range of external/legacy systems and provides for
an open and explicit specification of all system inputs and outputs (i.e., at the level of
both domain definition and problem description).
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3.1 Representation of SOF Domains

Comirem allows the user to define a problem-solving context (called a situation) that is comprised
of descriptions of domain-specific activities, resources and capabilities. These descriptions are
built upon a set of system-provided situation-independent primitives, such as basic move and
event activities, stationary and mobile resources, and temporal sequencing constraints. (These
primitives are formally introduced in the following section, 3.2: Conceptual Model.) Situation
descriptions are augmented by loading in one or more plan descriptions (called scenarios) defin-
ing networks of activities to which available resources must be assigned. Scenarios rely on the
activity types, resource types and instances, and capabilities defined within the currently loaded
situation. This separation of data allows the user to establish a specific context within which an
evolving set of activities is to be scheduled.1

For example, a typical military situation may involve resource definitions for some basic he-
licopter types (e.g., MH-47, MH-60) and some instances of those types (e.g., tail numbers MH-47-
001, MH-47-001, MH-60-001) initially located at a predefined location (e.g., BASE-ALPHA). Each
helicopter type provides a set of capabilities (e.g., heavy-transport, light-transport) that
may in turn be required by typical military activities (e.g., deploy-forces, evacuate-forces).
These activity types may further include detailed descriptions of required subactions, such as
cargo loading/unloading steps and positioning/depositioning legs that may be required of their
assigned resources.

Given the situation described above, the stage is now set to define a rescue plan involving
instances of the deploy-forces and evacuate-forces activity types that relies on the three
helicopters available at BASE-ALPHA to deploy forces and perform a rescue and evacuation mis-
sion to/from some designated location (e.g., embassy). After loading both the situation and
scenario (the latter of which identifies the necessary plan-specific deployment/rescue locations
such as embassy), Comirem can be used to determine the feasibility of the plan given its various
requirements and constraints and the available resources, keeping in mind that additional plans
may have already been loaded and scheduled within this same situation.

A Comirem situation description includes the following pieces of information:

� activity type definitions: descriptions (i.e., attributes and their default values) of activity
classes available for constructing a plan (e.g., move-cargo, airdrop-forces, fighter-
escort)

� resource type definitions: descriptions (i.e., attributes and their default values) of all available
resource classes (e.g., F-16, B-2, MH-60)

� model type definitions: hierarchical classifications of resource types relevant to a particular
domain (e.g., ROTOR and FIXED-WING for aircraft, WHEELED and TRACKED for vehicles) that
encapsulate common constraints and capabilities

1Only a single situation may be in effect (i.e., loaded) at any point in time; loading a situation erases any existing
information about activity types, resources types and instances, and capabilities. Scenarios, on the other hand, are
cumulative: that is, multiple plans can be loaded into a single situation to represent multiple demands (i.e., sets of
activities) to be scheduled. (The exception is that once loaded, plan files cannot be reloaded into a situation.)
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� capabilities: descriptions of capabilities (e.g., heavy-transport, light-transport) sup-
ported by resources and required by activities (to provide high-level links between activities
and resources)

� resource instances: descriptions (i.e., sets of attribute/value pairs) of all resources available
in a particular situation (e.g., MH-47-001, MH-47-002)2

Once a situation has been loaded into Comirem, any number of scenarios may be loaded and
then scheduled using the various type and instance definitions made available by the situation.
A scenario description includes the following pieces of information:

� plan configuration: description of a plan (e.g., its temporal horizon and granularity, release
and due dates, etc.)

� activity instances: descriptions (i.e., sets of attribute/value pairs) of the activities that com-
prise a plan

� constraint instances: descriptions (i.e., sets of attribute/value pairs) of the constraints gov-
erning the temporal sequencing of activities in a plan3

� place instances: descriptions (i.e., sets of attribute/value pairs) of the places specific to a
plan (e.g., locations referenced by the plan’s activities)

Figure 1 identifies the grouping of problem structure and data information into situation
and scenario files and specifies the order in which these files are loaded into Comirem.

3.2 Conceptual Model

The underlying scheduling domain model in Comirem is based on the Ozone scheduling domain on-
tology [Smith and Becker, 1997], which allows a user-interpretable description of an application
domain to be mapped to application system functionalities. Problems are expressed in terms of
activities, resources and constraints. An activity requires the use of one or more resources for some
period of time to perform a designated task. Both activities and resources are governed by a
set of constraints, which impose restrictions on when activities can execute, what resources can
be assigned, and when resources are available for assignment. In the following subsections, we
present these basic representational entities in further detail.

Additionally, Comirem supports the use of capabilities, which are objects for defining an in-
direct mapping between an activity and its required resource(s). Capability-based resource re-
quirements permit the user to specify activity needs from an activity-based perspective and avoid
having to assemble an individual set of resource types for each activity by hand.

Figure 2 illustrates the various relationships that can be defined in Comirem among activ-
ities, resources and capabilities, to facilitate a range of mappings between activities and their
required resources. Using the more traditional approach, activities—both types and instances,

2The set of available resource instances in a situation is often referred to as the “bed-down” information.
3At the present time, Comirem does not support user-definable constraint types. The set of available constraint

types is described in Section 3.2.3 (Constraints).
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Figure 1: Comirem input data sources

can be linked directly to a set of resources identified by either type, instance or model. Addi-
tionally, capabilities can be included in this mapping by allowing activities (again, both types
and instances) to refer to required capabilities, which can in turn be linked to the resources that
may satisfy their requirements (by type, instance or model). Finally, resources can also be linked
to capabilities to signal their ability to deliver particular capabilities depending on how they are
configured.4

In the remainder of this section, we introduce the primary components of the Comirem con-
ceptual model: activities (Section 3.2.1), resources (Section 3.2.2), constraints (Section 3.2.3),
capabilities (Section 3.2.4) and plans (Section 3.2.5).

3.2.1 Activities

Comirem provides two basic activity types, one for representing moves from one location to an-
other (typically achieved using one or more mobile resources) and another for representing events
taking place at a single location (and possibly requiring one or more stationary or mobile re-
sources). Both of these activity types are illustrated in Figure 3. A third activity type, called a
wrapper, provides a mechanism for enveloping other activities as in a parent-child relationship
(with optional siblings) to represent hierarchical activity networks. A wrapper is an abstract
activity whose semantics is more aptly defined by that of its constituent activities.5

Activities may impose a number of resource allocation constraints:

� capability/resource requirements designate the set of resources that might alternatively be
used to support the activity, expressed either in terms of high-level capabilities (e.g., light-

4Resources refer to capabilities by means of a configuration mechanism that facilitates the representation of dy-
namically configurable resources that can be modified to deliver different capabilities over time. The configuration
mechanism is described in Section 3.2.2.

5The concept of a wrapper activity is discussed in greater detail in Section 3.2.1.1.
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transport, close-air-support), specific resource types (e.g., MH-47, C-130, HMMWV, MK-V)
or resource model types identifying relevant predefined resource classes (e.g., ROTOR, FIXED-
WING, WHEELED, TRACKED), and can optionally dictate the exact number of resource in-
stances required

� a duration, specified either as a range, a single fixed time value, or as a function of speed
and distance (in the case of moves) that dictates how long the activity will take

� a manifest, specified in terms of common cargo and passenger types and quantities, indi-
cating the capacity requirement of the activity

Absent an explicit designation of the number of resources required by an activity, the man-
ifest is matched against the feasible configurations of a candidate resource to determine the

EVENTMOVE
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Destination

Place

Reservation Interval
Mobile

Resource
Timeline

Reservation Interval
Stationary

Resource
Timeline

Figure 3: Move and event activity types
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exact number of resource instances required to perform the activity.

3.2.1.1 Hierarchical Activity Networks

A given input activity may expand into a hierarchy of subactivities. For example, a move in-
volving an aircraft may be comprised of positioning and depositioning legs, cargo-loading and
unloading steps, and the actual flight leg between the origin and destination, all of which must
be temporally synchronized. Activities with subactivities are referred to as aggregate activities and
may be based on any of the Comirem activity types: namely move, event or wrapper. Comirem

provides the means for specifying the expansion of an aggregate activity into a network of syn-
chronized subactivities, with each subactivity possibly specifying its own requirements and im-
posing its own resource usage constraints, as illustrated in Figure 4.

Time

MOVE-CARGO
[aggregate]

RESOURCE-SOURCING
[aggregate]

LOAD

event

TRANSPORT

move

UNLOAD

event

DEPOSITIONING

move

POSITIONING

move

MOVE-CARGO w/RESOURCE-SOURCING mobile resource movement:
Resource Origin

[Cargo] Origin
Resource Destination

[Cargo] Destination

move

wrapper

Figure 4: Aggregate activity type examples (RESOURCE-SOURCING and MOVE-CARGO)

The activity network hierarchy in Figure 4 defines three levels of abstraction for the move-
ment of cargo using a mobile resource. At the top level, the resource must be sourced, or posi-
tioned, from a previous location and then delivered (or returned, as in the case of a round-trip
reservation) to a subsequent location (note that one or both of these may be empty if the re-
source is already located at its designated origin or will be left at its designated destination).
The RESOURCE-SOURCING aggregate activity identifies the overall extent during which a mobile
resource must be reserved to perform its required tasks, including the positioning and depo-
sitioning and the actual cargo movement. The intermediate level shows the separation of the
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(de)positioning legs from the actual cargo-movement activity, MOVE-CARGO, which is itself an
aggregate move activity. At the bottom level, the MOVE-CARGO activity expands into three ba-
sic steps: a cargo-loading event that allocates time for cargo to be loaded onto the mobile
resource, the actual move activity during which the cargo will be transported, and the final
cargo-unloading event. At the bottom of Figure 4, note that the location of a mobile resource
assigned to the RESOURCE-SOURCING activity is tracked over time, in conjunction with the leaf
nodes in the activity network.

The specification of activity networks in Comirem relies on the concept of an anchor, or
nexus activity, which identifies the level of detail at which a network of activities is defined within
a plan. The nexus activity is the activity within a hierarchical activity network (as shown in
Figure 4) from which the entire (local) network is derived, in both an upward and downward
direction. It provides a convenient handle to the activity network that can be easily referenced
by other activities within a plan, and thereby helps to collectively define the level at which an
entire plan is most appropriately viewed.

For example, the activity network in Figure 4 is arguably most logically anchored by the
MOVE-CARGO activity, because it identifies the logical scope for a cargo-movement activity in a
typical logistical plan. From the perspective of the planner, the movement of cargo from one
location to another represents a primary action in such a plan. The sourcing of the mobile
resources used to move the cargo is a supporting action that can effectively be handled in the
background. Synchronization among activities in a plan will most likely be specified in terms of
cargo movements, ignoring any potential supporting (de)positioning legs that may need to be
instantiated to facilitate them.

Given this view, the (de)positioning legs surrounding the MOVE-CARGO activity can be viewed
as providing a wrapper around the activity that defines the necessary positioning activities of any
mobile resource secured for the task. Figure 5 illustrates the recursive expansion of a nexus
activity both downward into child subactivities and upward into wrapper activities. Note that
any activity within an expanding activity network, be it derived as a child or wrapper activity, may
itself further expand into child or wrapper activities. Returning again to Figure 4 and using MOVE-
CARGO as the nexus activity, it should be evident that the RESOURCE-SOURCING aggregate activity
is instantiated as a wrapper around MOVE-CARGO, with the POSITIONING and DEPOSITIONING
moves as its children, and that the LOAD, TRANSPORT and UNLOAD events are instantiated as the
direct children of the MOVE-CARGO aggregate activity.

One additional definition is appropriate at this point. We use the term derivative to describe
an optional activity (i.e., an activity whose duration may be zero). Positioning legs for mobile
resources are the most obvious derivative activities. If a mobile resource is required to be at a
specific location to load cargo for transport and is already collocated with the cargo, then the
duration of a positioning leg to get it from its current location to the location of the cargo is
zero, and the activity is therefore a no-op. It only warrants a non-zero duration if the resource
must move between distinct locations, in which case the duration is dependent on its speed and
the necessary travel distance.6

Comirem relies on variables within activity networks to both retain and convey values across
individual activities. Variable values are stored in class slots in activity instances and passed to
child and wrapper activities during activity network instantiation. Two typical variables used to

6All distances in Comirem are derived using a Great Circle calculation.
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support mobile resource sourcing are resource-origin and resource-destination. These
variables allow the planner to indicate a specific location from which to secure a resource and
a specific location to which it should be returned following its use, by passing their values to
relevant supporting move activities. To define round-trip sourcing, the resource-origin and
resource-destination variables are simply set to the same location. In a more flexible plan,
where the sourcing locations of resources may not be specified, these variables can be initialized
as free variables, thereby allowing the scheduler to control their assignment in the process of
considering alternative resource options. Resources can therefore be obtained from, and re-
turned to, any location(s) that can be reached in the amount of time that is available both prior
to, and following, the activity in question.7

To further illustrate the concept of activities in Comirem, we provide (in the following three
figures) annotated snapshots of XML data files that demonstrate how some of the entities
we have addressed in this section can be specified. Figure 6 presents the definition for the
RESOURCE-SOURCING aggregate wrapper activity. Figure 7 presents the definition for the MOVE-
CARGO aggregate activity that references the RESOURCE-SOURCING wrapper. Both of these defini-
tions belong in the situation-types.xml data file. Finally, Figure 8 demonstrates how an instance
of a predefined activity type is specified, in this case by referencing the MOVE-CARGO activity. This

7The process of binding free variables is described in detail in Section 3.2.1.4.
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definition belongs in the scenario-plan.xml data file.8

In Figure 6, the RESOURCE-SOURCING wrapper adds positioning and depositioning move ac-
tivities around an invoking child activity (e.g., MOVE-CARGO from Figure 4) in a directly abutting
sequence and passes along the necessary variable values (i.e., resource-origin, resource-
destination, origin and destination) to help in determining required travel distances. The
distinction between <variables> and <inputs> is that variables lacking values at instantiation
time are considered free, while inputs must be provided by the invoking activity. Because this ac-
tivity is intended to be applicable to a wide range of resource types, requirements for the specific
mobile resource(s) to be sourced are specified with the invoking child activity instance, in which
case, as a result of this wrapper, the necessary time block for the reservation(s) will include the
(de)positioning legs.

Define the decomposition of an
activity into subactivities and
specify how values are passed
down from parent to child.  The
initarg forms specify how values
are assigned to subactivity
variables.  For example, the
origin and destination of the
positioning move are assigned
the resource-sourcing activity’s
resource-origin and origin slot
values, respectively):

Define the temporal sequencing
of subactivities (:child refers to
the subactivity that invoked the
wrapper).  The default lower
bound for successor constraints
is 0 minutes, so the additional
zero-duration upper bounds
indicate that these activities must
abut one another:

Declare the variables to be
maintained by the activity:
Declare the variables required
from the invoking child activity:

<type>
  <wrapper name="resource-sourcing">

    <variables>resource-origin resource-destination</variables>

    <inputs>origin destination</inputs>

    <decomposition>
      <child-spec name="positioning">
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <slot>resource-origin</slot>
          </initarg>
          <initarg name="destination">
            <keyword>origin</keyword>
          </initarg>
        </initargs>
      </child-spec>
      <child-spec name="depositioning">
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <keyword>destination</keyword>
          </initarg>
          <initarg name="destination">
            <slot>resource-destination</slot>
          </initarg>
        </initargs>
      </child-spec>
    </decomposition>

    <constraints>
      <constraint>
        <type-ref>successor</type-ref>
        <from>positioning</from>
        <to>:child</to>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
      <constraint>
        <type-ref>successor</type-ref>
        <from>:child</from>
        <to>depositioning</to>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
    </constraints>

  </wrapper>
</type>

Figure 6: Annotated XML specification for the RESOURCE-SOURCING wrapper activity type

8While the RESOURCE-SOURCING aggregate activity is not currently part of the Comirem activity type library, it is
a logical candidate for a SOF-specific activity-type library, as we discuss in Section 6.1.1 (Plug-In Domain Models).
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In Figure 7, the MOVE-CARGO aggregate activity is defined as a move activity that expands
both downward and upward to generate the activity network shown in Figure 4. It decomposes
into three subactivities (of predefined types not shown) that divide the overall cargo-movement
action into separate loading, transporting and unloading activities. It invokes the RESOURCE-
SOURCING wrapper to provide the necessary (de)positioning legs, and passes on the necessary
resource-origin, resource-destination, origin and destination variable values to help
determine the required travel distances for those moves. The former two variables are defined as
inputs to be specified with an instance of this type (or left unspecified to signify free variables),
while the latter two reference the standard move slots. As in the previous example, there are
no resource requirements specified with this type definition, so that it may be used to define a
variety of cargo-movement activities. The requirements instead should come from the instance
definition that references this activity type (see Figure 8).

Finally, in Figure 8, an instance of the MOVE-CARGO activity type is defined to move 120 pas-
sengers (PAX) from home-station to staging-area. Two aspects of this definition are worth
highlighting:

1. Values for the resource-origin and resource-destination variables maintained by the
MOVE-CARGO move activity and RESOURCE-SOURCING wrapper activity are specified explic-
itly using initarg tags, thereby requiring that any resource allocated to perform this task
must be located initially at home-station (thus eliminating the need for a positioning
leg) and then returned to home-station as part of the unsourcing actions (i.e., the de-
positioning leg). If not specified, the scheduler is free to secure a mobile resource from
any location—as long as it can be sourced to home-station within the available time
window—and to leave the resource at the destination of the cargo move, namely staging-
area.

2. The resource requirements for this activity instance are specified in terms of a capability,
namely light-transport, indicating that the scheduler is free to consider any available
resource belonging to a class defined as capable of performing a light-transport kind
of task.9

9
Comirem treats requirement entries as parallel resource requirements, meaning that additional resources must

be secured for the same time period—i.e., the scope of the requirement (in this case, the position-for-insertion

activity). Note that additional actions specified by wrapper activities (such as sourcing moves) may result—
legitimately—in different overall reservation durations.
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Define the decomposition of an
activity into subactivities and
specify how values are passed
down from parent to child.  The
initarg forms without slot
attributes (i.e., in the transport
subactivity) indicate that values
are assigned to the subactivity’s
variables using the identically
named variables of the parent:

Define the temporal sequencing
of subactivities:

Define the wrapper activities
invoked by an activity and
specify how values are passed
up from child to (wrapper)
parent:

Declare the variables to be
maintained by the activity:

<type>
  <move name="move-cargo">

    <variables>resource-origin resource-destination</variables>

    <decomposition>
      <child-spec>
        <type-ref>load</type-ref>
        <initargs>
          <initarg name="place">
            <slot>origin</slot>
          </initarg>
        </initargs>
      </child-spec>
      <child-spec>
        <type-ref>transport</type-ref>
        <initargs>
          <initarg><slot>origin</slot></initarg>
          <initarg><slot>destination</slot></initarg>
        </initargs>
      </child-spec>
      <child-spec>
        <type-ref>unload</type-ref>
        <initargs>
          <initarg name="place">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </child-spec>
    </decomposition>

    <constraints>
      <constraint>
        <type-ref>successor</type-ref>
        <from-type>load</from-type>
        <to-type>transport</to-type>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
      <constraint>
        <type-ref>successor</type-ref>
        <from-type>transport</from-type>
        <to-type>unload</to-type>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
    </constraints>

    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg><slot>origin</slot></initarg>
          <initarg><slot>destination</slot></initarg>
          <initarg>
            <slot>resource-origin</slot>
          </initarg>
          <initarg>
            <slot>resource-destination</slot>
          </initarg>
        </initargs>
      </wrapper>
    </wrappers>

  </move>
</type>

Figure 7: Annotated XML specification for the MOVE-CARGO activity type
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<instance>
  <activity name="position-for-insertion">

    <type-ref>move-cargo</type-ref>

    <description>position insertion teams at staging area</description>
    <origin>home-station</origin>
    <destination>staging-area</destination>

    <initargs>
      <initarg name="resource-origin">
        <value>home-station</value>
      </initarg>
      <initarg name="resource-destination">
        <value>home-station</value>
      </initarg>
    </initargs>

    <requirements>
      <requirement>
        <capabilities>light-transport</capabilities>
      </requirement>
    </requirements>

    <manifest>
      <manifest-entry>
        <cargo count="120">PAX</cargo>
     </manifest-entry>
    </manifest>

  </activity>
</instance>

Indicate the type of activity to
instantiate:
Provide initial slot values for
the activity:

Specify the resource
requirements for the activity
(in this case, via a capability):

Specify the manifest for the
activity:

Provide initial slot values for
the attributes of any derived
activities (i.e., from either
wrappers or subactivities):

Figure 8: Annotated XML specification of a MOVE-CARGO activity instance

3.2.1.2 Activity Attributes

Activity attributes can be specified at either the class or instance level, depending on the pref-
erences of the domain modeler and the nature of the domain. Class attributes define a default
value for all class instances, while instance attributes permit an instance to override a class-level
default with its own value. A typical example of this issue involves the speed of a resource. A par-
ticular type of resource (e.g., MH-60) may have a standard average traveling speed of 177 mph,
while a particular MH-60 instance (e.g., MH-60-001) may have been altered to increase its aver-
age traveling speed to 200 mph. By specifying a speed attribute with a value of 177 mph in the
MH-60 resource-class definition form, all MH-60 instances will—by default—inherit the 177 mph
average traveling speed value. In the case of MH-60-001, specifying a speed attribute with a
value of 200 mph in its instance definition form will allow it to override the default 177 mph
value with its own individual 200 mph value.

In the activity attribute tables that follow (Tables 1 and 2), the various activity attributes are
classified according to how they are generally specified. But note that in practice they could be
specified at either the class or instance level. Note also that the attributes in these tables follow
the XML grammars described in Section A.2.
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Table 1: Activity type attributes

� Name [required]

The name of the activity type

� Variables [optional]

The variables maintained by an activity, typically for use in informing the duration-
calculation process (e.g., for dealing with mobile-resource positioning)

For wrappers, variable values are provided by the invoking activity; otherwise, they
are provided by the activity instance. If left unspecified, they are considered free.

� Inputs [optional]

The variables to be initialized at instantiation time by an activity instance

� Description [optional]

A description of the activity

� Decomposition [optional]

A template that defines how an activity is expanded into constituent subactivities

� Constraints [optional]

The temporal sequencing constraints that govern any constituent subactivities

Within this specification, a special :child variable can be used to reference the
invoking activity during instantiation.

� Wrappers [optional]

The wrapper-activity types to be invoked during instantiation

� Requirements [optional]

Specifies the resources or capabilities required by an activity

� Derivative-p [optional]

A flag indicating whether or not the activity type is derivative in nature (i.e., its
instances only become necessary as the result of some other scheduling decision,
as with a (de)positioning leg for a mobile resource) The default is nil.

� Capability-Type [optional]

Indicates what kind of capabilities are appropriate for this activity (i.e., move or
event) The default is obtained from the activity’s base type.

This value is generally only overridden in special cases (e.g., when a mobile re-
source is required by an event, in which case move-specific capabilities may be
more appropriate)
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Table 2: Activity instance attributes

� Name [required]

The name of the activity

� Type-Ref [required]

The type of the activity: either move, event or wrapper, or a user-defined activity
type

� Display-Name [optional]

A presentable print-name for the activity (for use in the GUI)

� Origin [required]

For moves, indicates the origin location

� Destination [required]

For moves, indicates the destination location

� Place [required]

For events, indicates the location at which the event takes place

� Initargs [optional]

A collection of keyword-value pair specifications for passing values either down to
subactivities, or up to wrappers, at the point of instantiation

� Manifest [optional]

Describes the cargo associated with an activity, in terms of predefined cargo types
(e.g., PAX (personnel), MUNITIONS, PALLETS, FUEL, AIRCRAFT)

� Duration [optional]

The duration of an activity, specified as either a minimum, maximum, min/max
pair, or fixed value

� Time-Bounds-Constraints [optional]

Specifies (1) any earliest/latest start/finish-time anchoring constraints (e.g., EST,
LST, EFT, LFT) on an activity using fixed temporal values, and (2) the ref-hours to
which an activity may be linked, by either its start or finish time, or both
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3.2.1.3 Sibling Activities

It is often the case that an activity requires more than a single resource instance—or collection
of single resource instances—to complete its desired task, generally depending on the size and
nature of its manifest.10 For example, consider that an activity responsible for moving person-
nel from one location to another and requiring instances of the MH-60 helicopter class needs
enough MH-60 instances to accommodate the number of personnel involved (according to the
activity’s manifest). In these cases, Comirem uses sibling activities to ensure that the proper
number of resource instances are allocated to an activity. A sibling is a clone of an original
nexus (i.e., plan-level) activity—and its fully expanded network of wrapper and child activities,
which helps transform a single activity, in a copy-and-paste fashion, into a series of multiple iden-
tical and possibly parallel activities, each requiring a single resource instance (or set of resource
instances).

Owing to their support of flexible decision-making, siblings are ephemeral in nature, lasting
only for as long as the planner/user stays with a particular resource requirement and/or manifest
configuration, or actual resource assignment.11 If either of an activity’s requirements or manifest
are changed at any time, then the number of siblings required by that activity may also change
in response.

In Figure 9, a fragment of a typical plan is presented. Prior to scheduling, Activity A3 requires
some number of instances of the MH-60 helicopter class to handle 48 PAX (personnel). At the

ACTIVITY
A2

ACTIVITY
A1

ACTIVITY
A3

ACTIVITY
A5

ACTIVITY
A4

ACTIVITY
A31

ACTIVITY
A32

ACTIVITY
A33

MH-60
48 PAX

A3 resource
requirement

& manifest

predecessor
activities

successor
activities

Figure 9: Fragment of a plan network (prior to sibling creation)

point when the scheduler begins allocating resources to Activity A3, it first determines, based
on its knowledge of the capacity of the relevant MH-60 configuration required for this task (i.e.,
24 PAX), that two MH-60s are needed. This determination process is illustrated in Figure 10.
A single sibling activity network is then instantiated and spliced into the network, as shown in
Figure 11 (the sibling and new temporal sequencing constraints are highlighted in red). If an

10Recall that the planner may also declare exactly how many instances of a resource are required by an activity,
thereby overriding the manifest-based calculation.

11In keeping with this fact, the Comirem GUI will display siblings—only if they are scheduled at times different
from their original activities—but they cannot be directly manipulated by the user. If a sibling is selected in the GUI,
Comirem will treat it as a selection of the original activity.
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assignment of MH-60s is made at this point, the overall plan network will stay in this state until
the allocation is changed. If an assignment is not made, the sibling will be removed and deleted,
and the network will return to its original state.

move

DEPLOY to
AIRPORT

MH-60 resource class definition:DEPLOY to AIRPORT activity instance definition:

move

DEPLOY to
AIRPORT

move

DEPLOY to
AIRPORT

move

DEPLOY to
AIRPORT

move

DEPLOY to
AIRPORT

Sibling #1:
manifest: 64 PAX

Sibling #2:
manifest: 64 PAX

Sibling #3:
manifest: 64 PAX

Original:
manifest: 64 PAX

Original:
manifest: 256 PAX

...
<manifest>
  <manifest-entry>
    <cargo count="256">PAX</cargo>
  </manifest-entry>
</manifest>
...
<requirements>
  <requirement>
    <capabilities>air-drop</capabilities>
  </requirement>
</requirements>
...

...

...
<configurations>
  <configuration name=":default" op="or">
    <cargo max="92">PAX</cargo>
    <cargo max="5">PALLETS</cargo>
  </configuration>
  <configuration name="heavy-transport">
    <cargo max="92">PAX</cargo>
  </configuration>
  <configuration name="air-drop">
    <cargo max="64">PAX</cargo>
  </configuration>
</configurations>

Figure 10: Sibling requirement calculation using manifest quantity and resource configuration
information

Note that while the splicing of siblings is done in a manner that facilitates parallel processing
of the original activity and its siblings, parallelism is not guaranteed. If only a single resource is
available (e.g., MH-60-001 in the case above), then the original activity and its sibling will have to
be performed in sequence. Figure 12 illustrates the case involving an activity and three siblings
scheduled on either one, two, three or four resources. A strict sequential ordering results from
the one-resource case ([a]), while complete parallelism is achieved when four resource instances
are available ([d]).

Finally, there are some conceptual limitations on siblings that are worth noting:

� The current model assumes that the changing of a resource’s configuration is a zero-
duration setup operation.12 This is because the scheduler looks to the resource class
to assess the capacity of a resource in a particular configuration instead of checking the
configuration of each individual candidate resource at the time it is expected to be used.

� Siblings inherit the identical resource requirements from their original activity and must all
be scheduled using the same specification (though not the same instance(s)). For exam-
ple, if the user selects the AC-130H aircraft type for an activity from among a list of possible
aircraft types, and the scheduler determines that three AC-130H aircraft instances are re-
quired to perform the task, then each of the original activity and its two siblings must
be assigned a single AC-130H aircraft instance (i.e., there can be no mix-and-match making

12To be more precise, Comirem resources currently do not change their configuration over time, although this
capability is envisioned (and partially supported).
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Figure 11: Fragment of a plan network following the instantiation of sibling activities

use of other possible required resources). This is because siblings are instantiated and
scheduled by the scheduler in the same step as their original activity, and only a single cal-
culation is performed to determine the required number of siblings based on a particular
resource type that applies to all activities (original and siblings) at the same time.

By extension, this limitation also applies to the case where multiple resources are required
for an activity by virtue of wrapper or child activities that may add their own individual
resource requirements to those of the nexus activity. In these cases, the scheduler creates
a single collective resource requirement at the outset of the scheduling step, determines
the number of siblings required, and uses the same resource set for each activity network
anchored by the original and its siblings.

� Related to the previous item, activities and their siblings also require that sourced mo-
bile resources (i.e., those requiring (de)positioning legs) report from and return to the
same location as specified by the original activity instance. This means that there is no
optimization done to minimize the use of extraneous positioning legs.

Note that this is not the case when specific sourcing locations, such as the resource-
origin and resource-destination variables mentioned earlier, are unspecified (i.e.,
free).
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Figure 12: Sequencing possibilities for sibling activities: example scenario consisting of three
siblings and an original activity scheduled on one, two, three and four resources
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3.2.1.4 Resource Installation

To maintain flexibility in the evolving plan network throughout the resource-allocation process,
Comirem implements a least-commitment, flexible time-bounds scheduling approach that de-
lays the refinement of task durations for as long as possible and avoids completely a strict tem-
poral sequencing of resource assignments (this latter process is described in Section 3.3). In this
section, we focus on the former process, which we refer to as resource installation, and describe
its purpose, its behavior, and its implications.

Because Comirem supports the specification of multiple resource-requirement options for
a single activity, and because the duration of an activity may depend on the particular char-
acteristics of the resource allocated to it (owing to either the speed of the resource or some
other relevant performance attributes), Comirem needs a mechanism for tightening its under-
lying plan representation when a scheduling decision is made that narrows the field of feasible
candidates—and therefore more accurately assesses the temporal requirements—for an activity.

As an example, consider a logistical environment that involves the movement of cargo from
location to location, with the possibility of using multiple types of mobile resources for the
movement activities. The duration of each movement is a factor of (1) the distance to be trav-
eled from origin to destination and (2) the speed of the mobile resource assigned to perform
the task. At first, the duration of each such movement activity A is a range of the form: [lb(A),
ub(A)], where lb(A) is the speed of the fastest candidate resource type and ub(A) is the speed of
the slowest candidate resource type for activity A. It is not until the point at which the scheduler
allocates a specific resource instance to a movement task that its duration converges on a fixed
value D(A) : lb(A) � D(A) � ub(A), determined by the speed of the selected resource and the
travel distance required. Once D(A) has been determined, the duration of the movement task
can be fixed and the network can be tightened to reflect the assignment. (But note that this
fixed-duration activity can still float within its possibly flexible time bounds, depending on the
available slack in its own plan.)

Whenever a specific resource candidate is considered for an activity, either as part of the
process of determining feasible scheduling options or performing an allocation, Comirem must
first install the resource on the activity to understand the exact temporal requirements of the
activity when paired with the resource in question. The basic installation process is summarized
in Table 3.

Figure 13 presents a graphical summary of an example situation existing prior to resource
installation when there is a choice between two resource types to perform a typical activity, and
Figure 14 illustrates the possible outcomes of the resource-installation process depending on
which resource type is chosen. Referring to Figure 13, notice that there are MH-60 helicopters
located at Resource Location 1, and MH-47 helicopters located at Resource Location 2.
The activity to which one of these resource types must be assigned is a roundtrip move from
the Staging Area to the Enemy Base, with book-ended positioning and depositioning legs to
source the aircraft. If the MH-60 resource is chosen, the resources will be sourced from and re-
turned to Resource Location 1. If the MH-47 resource is chosen, the resources will be sourced
from and returned to Resource Location 2. The actual required duration of the movement
activity is either 175 minutes using the MH-60 resource to travel 537.5 miles at 184 mph, or 212
minutes using the MH-47 resource to travel 625 miles at 177 mph.

Referring now to Figure 14, notice the state of the movement activity prior to resource instal-
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Table 3: Resource installation process description

Operation-Install-Resources:

With resource as input:

[1] Bind free variables
[2] Call Operation-Install-Resources recursively on all subactivities:

For each leaf-level subactivity,
[a] Cache existing temporal bounds
[b] Calculate and assert new temporal bounds

given resource and all relevant free variable bindings
[c] Check network consistency

[i] In case of inconsistency, undo all changes and throw a failure
[ii] Otherwise, return success

[3] If a failure is caught, undo all changes and throw a failure
Otherwise, return success

lation. Based on the two resource options, the move will take either 65 or 68 minutes, and the
(de)positioning legs are empty. Following the installation of the MH-60 resource, whereupon the
Resource Origin and Resource Destination variables are bound to Resource Location 1,
the exact temporal requirement for the activity and its (de)positioning legs is shown in Case 1.
Following the installation of the MH-47 resource, with the Resource Origin and Resource
Destination variables bound to Resource Location 2, the exact temporal requirement for
the activity and its (de)positioning legs is shown in Case 2.

As long as a resource is installed on an activity, whether or not it is allocated to that activity,
the temporal constraints it imposes on the network remain in effect. Only after uninstalling
the resource—a process that reverses the actions of the installation by restoring the cached
original temporal bounds for all affected activities—is the original temporal flexibility of the
activity restored to the network.
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Figure 13: Resource installation example: a scenario
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MOVE w/RESOURCE-SOURCING
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Prior to resource installation:
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Resource Origin: Resource Location 1, Resource Destination: Resource Location 1
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Figure 14: Resource installation example: temporal implications of two resource alternatives
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3.2.1.5 Threads

The remaining activity network structure provided by Comirem is called a thread, which facilitates
the aggregation of a sequence of temporally and geographically contiguous activities so that
they may share a set of resources amongst themselves without having to allocate them each
individually. It is often the case that a series of activities may require the same resource or
collection of resources to be used by each constituent activity, as when a military taskforce is
configured and assigned to perform an entire mission or some portion of a mission, and is
also responsible for providing its own equipment. Threads effectively define a local context
within which a set of resources can be shared by a group of activities. During the time when
resources are assigned to a thread, they are available exclusively to the activities that comprise
the thread.13 The basic thread structure is presented in Figure 15.

The constraints on thread creation are as follows:

� Activities must abut one another; the temporal sequencing constraint (i.e., successor, be-
fore) between each activity must have temporal bounds of [0,0]

� The sequence of activities must reflect a continuous route from one specific location to
another, as specified by a move’s origin and destination or an event’s place

Activity 2

Thread

Activity 1

same-start
[0,0]

same-finish
[0,0]

move

move

Activity 3

event

before
[0,0]

Destination/Place( Activity 1 )
= Origin/Place( Activity 2 )

before
[0,0]

Activity N
event

before
[0,0]

Destination/Place( Activity 2 )
= Origin/Place( Activity 3 )

Destination/Place( Activity 3 )
= Origin/Place( Activity 4 )

Destination/Place( Activity N-1 )
= Origin/Place( Activity N )

before
[0,0]

Figure 15: Thread structure

An example (albeit simplified) of the use of threads in a plan is provided in the Section 5.2,
which describes the Embassy Rescue scenario.14

13A more detailed description of how resources are assigned to threads is presented in Section 3.2.2.6
(Taskforces), which introduces the concept of a taskforce.

14Threads must currently be defined using an additional data file that accompanies the scenario-plan.xml file,
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3.2.2 Resources

Comirem supports the definition of both stationary and mobile renewable resources.15 Sta-
tionary resources (called either places or components) reside at a fixed geographic location, while
mobile resources may move—or be moved—from location to location at speeds determined by
their characteristics and configuration. Usage of stationary resources (e.g., bases, airstrips) is
a function of (typically) their availability and capability to accommodate various tasks. That is,
stationary resources are often used simply as placeholders/anchors within a plan to determine
movement requirements for mobile resources, and in such cases are often not actually allocated
to activities (places and components are described further in Section 3.2.2.5). They can, how-
ever, be required by activities and allocated by the scheduler. Mobile resources, alternatively,
are more complex. In some cases (e.g., involving transport vehicles), usage depends not only on
their capability to support a given task, but also on such additional factors as capacity, speed,
location and (historically) range.16 In other cases (e.g., personnel), usage can occur at different
locations but may require transport between locations. Resources can also be grouped into
higher-level aggregate resources (e.g., a military taskforce), to perform activities as a single entity
for some period of time.

All resources in Comirem are unit-capacity resources: that is, they can accommodate only a
single activity at a time—unless defined as uncapacitated place components (see Section 3.2.2.5).
Extension of the Comirem resource model to support multi-capacity resources has been identi-
fied as a logical future extension (see Section 6).

3.2.2.1 The Resource Requirement Hierarchy

Comirem provides a base group of common mobile resource types, such as aircraft, sea-
craft and landcraft, which define generic vehicle classes that may be further specialized as
part of a particular domain model. Additionally, the FOOT resource type provides an organic
mobile resource (i.e., of type :organic) that can be used to represent the movement of human
resources. Accompanying these predefined resource types are a set of model types, such as
ROTOR and FIXED-WING for aircraft, WHEELED and TRACKED for landcraft, and POWER and ROW for
seacraft. Together with the set of capabilities, resource types and resource instances defined for
a particular domain (i.e., a situation), model types provide a fourth level in the hierarchy for
specifying resource requirements for activities at multiple levels of abstraction.

Figure 16 illustrates a subset of the resource-requirement hierarchy for aircraft in a particular
domain. The light-transport capability can be achieved using the MH-47 and MH-60 resources
classes, while the air-drop capability can be achieved using the MH-60 and MC-130H resource
classes. Both the MH-47 and MH-60 resources are aircraft of model type ROTOR, while the MC-
130H is a FIXED-WING. Finally, three instances of MH-60 are shown at the bottom: MH-60-001,
MH-60-002 and MH-60-003. As mentioned earlier, activities can specify resource requirements at
any of these four levels of abstraction, which delivers valuable flexibility to the planner in cases
where specific requirements are not appropriate.

since Comirem does not yet provide an interactive means nor an XML data file for thread specification. This is a
temporary limitation.

15At the present time, Comirem does not support consumable resources (e.g., for items such as fuel, ammuni-
tion, money).

16For aircraft, range is becoming less of a constraint on usage, owing to the increased use of in-flight refueling.
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light-transport
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MH-47 MH-60 MC-130H
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air-dropCapability:

Model
Type:
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Class:
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Instance:

Figure 16: Subset of an aircraft-specific resource-requirement hierarchy

3.2.2.2 Domain-Specific Resource Types

It is not within the purview of Comirem to provide support for all conceivable resource classes.
Toward that end, and akin to the similar support for the definition of domain-specific activity
types described in Section 3.2.1.1 (Hierarchical Activity Networks), Comirem does provide a
mechanism for users to define new domain-specific resource classes through the extension of
existing Comirem classes (such as aircraft, landcraft and seacraft).

Figure 17 illustrates the definition of both a domain-specific resource type and an instance
of this new type. An MH-47 is defined as an aircraft (a helicopter of model type ROTOR) with an
average air speed of 177 mph, which in its default configuration can accommodate as cargo,
55 PAX (i.e., personnel). Upon reading and processing the situation-types.xml file for this do-
main, Comirem will establish the MH-47 resource type by generating and evaluating the appro-
priate class definition. Subsequent MH-47 instance definitions appearing inside the situation-
instances.xml file will lead to the creation of MH-47 instances.

From the perspective of the Comirem scheduler, the salient features of a resource are: (1) its
availability and (2) its influence on the expected duration of a requiring activity. For mobile
resources, the expected duration for a move activity is determined by the specified origin and
destination and the average speed of the resource, computed using a Great Circle calculation.
At the present time, in all other cases (i.e., determining the expected durations for stationary
resource reservations and non-moving mobile resource reservations), Comirem must rely on du-
rations specified using duration constraints accompanying activity definitions. The resource at-
tributes necessary for providing this information to the scheduler are identified in the following
section. Just as there is no formal way to specialize behavior on user-defined, domain-specific
activity types, Comirem presently lacks a formal mechanism for doing the same with resource
types. This is a logical future extension that is discussed in Section 6.

29



Defines the MH-47
aircraft resource type, a
ROTOR model type
capable of an average
speed of 177mph and
able to carry 55 PAX:

Defines an instance of a
base type (i.e., a place)
called home-station
with a specific location:

Defines an instance of an
MH-47 aircraft resource
type called MH-47-001,
located initially at home-
station with capacity
available from 1 January
2002:

situation-types.xml:

situation-instances.xml:

<type>
  <aircraft name="MH-47">
    <model-type>ROTOR</model-type>
    <speed units="mph">177</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="55">PAX</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<instance>
  <resource name="MH-47-001">
    <type-ref>MH-47</type-ref>
    <placement>home-station></placement>
    <capacity-list>
      <capacity-interval>
        <start-time>20020101T000000</start-time>
        <end-time>:infinity</end-time>
        <units>1</units>
      </capacity-interval>
    </capacity-list>
  </resource>
</instance>

<instance>
  <place name="home-station">
    <type-ref>base</type-ref>
    <placement>
      <location latitude="37.08" longitude="-122.07"></location>
    </placement>
  </place>
</instance>

Figure 17: Annotated XML specifications of resources

3.2.2.3 Resource Attributes

The attributes for resources, both stationary and mobile, are described in Tables 4 and 5, and
follow the XML grammars described in Section A.3. As with the activity instances discussed in
Section 3.2.1.2 (Activity Attributes), note that values for these attributes can be provided either
at the class level, as part of the definition of a specialized resource type, or at the instance level,
as part of the definition of a specific resource instance.
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Table 4: Resource type attributes

� Name [required]

The name of the resource type

� Description [optional]

A description of the resource

� Model-type [optional]

The name of a predefined model type (e.g., ROTOR, FIXED-WING), for classifying
the resource

� Configurations [optional]

A collection of configurations that describe the capabilities of a resource depending
on how it is physically configured a

Resource configurations are specified in terms of the aforementioned predefined
cargo types (e.g., PAX, MUNITIONS, FUEL). The default configuration permits un-
limited cargo capacity on a resource (i.e., no siblings are required when using it).

� Capabilities [optional]

A list of capabilities that can be delivered by this resource

Capabilities appearing in this list need not be predefined. If referenced for the first
time in this list, a new capability object will be created on the fly and linked to the
resource.

� Speed [required]

For a mobile resource, its average traveling speed

� Range [ignored]

For a mobile resource, its maximum travel range b

aConfigurations in Comirem are currently treated as though they can be changed instantaneously, as
if they are achievable by means of zero-duration setup actions. Note, however, that the modifications
necessary to support true situation-dependent setups are relatively minor.

bAt the present time, Comirem does not enforce range constraints.
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Table 5: Resource instance attributes

� Name [required]

The name of the resource

� Type-Ref [required]

The type of the resource: either mobile, place, component, aircraft, landcraft
or seacraft

� Placement [required]

The placement of a resource

For mobile resources this is an initial location.a

Places can only be placed at latitude/longitude locations. Mobile resources and
components can be placed at either a latitude/longitude location or another place
instance.

� Components [optional]

For place resources, the collection of capacitated component resources residing
with them (e.g., runways at an airport)

� Uncapacitated-components [optional]

For place resources, the collection of unlimited-capacity component resources re-
siding with them, specified in terms of capability, model type or resource class

� Capacity-list [optional]

A sequence of possibly non-contiguous capacity intervals, indicating at the outset,
the time windows during which the resource is available for allocation (i.e., akin
to business hours)

Note that Comirem currently only supports unitary capacity intervals. The default
capacity window extends for the entire scheduling horizon.

aAn altitude can also be provided, although it is currently ignored. Travel-distance calculations are
made under the assumption that all locations are at the same altitude (e.g., sea level).
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3.2.2.4 Flexible Timelines

As has been mentioned earlier, Comirem implements a flexible time-bounds scheduling approach
that avoids assigning specific fixed time intervals to the activities in a plan when allocating re-
sources. Instead, resource assignments become floating reservations that can move forward
and backward (i.e., downstream and upstream) in time according to their latest finish times
and earliest start times, respectively. As activities are scheduled on a resource, existing reserva-
tions are pushed aside to make room for the insertion of new reservations. It is only when such
shifting will not open up enough room for a new reservation that the scheduler gives up and
considers another resource candidate instead.

A3A2A1

Activity A2 [wrapper]A12 [nexus]
A21

A13

A121 A122 A123

A B C D

E F

A3

GF

A22 [nexus]

A221 A222 A223

Activity A1 [wrapper]

A11

?

A B C D E F G

start-time
range: A1

finish-time
range: A1

start-time
range: A2

finish-time
range: A3

finish-time
range: A2
start-time
range: A3

Activities requiring mobile resource R1

Resource R1 timeline & locations over time

mobile resource movement
w/free resource-origin variable

Any resource assignment to this interval must ensure that R1 can
get to location E from the new activity’s final location by LST(A22).

Figure 18: Insertion of activities onto a mobile resource timeline

In Figure 18 (top), note that three activities: A1, A2 and A3, all require the use of re-
source R1. Note also that activity A1 requires R1 to be sourced from location A and returned
to location D, while A2 has its resource origin declared as a free variable and leaves R1 at its
destination location F. Activity A3 simply requires R1 to start at location F and finish up at G.
Activities A2 and A3 can easily be scheduled in sequence on R1 because of the shared resource
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location F and the flexibility in the finish-time range for A2 and the start-time range for A3 (i.e.,
despite the overlap, there is still room for both to use R1). Similarly, activities A1 and A2 have
no temporal overlap at all, even if A2 has to secure R1 from location D.

Once activities A1, A2 and A3 have been assigned to resource R1 (bottom of Figure 18), the
interval of available capacity between A1 and A2 takes on an additional (implicit) constraint,
which is that any reservation within that interval must leave activity A2 with enough time for it
to source R1 from the new activity’s final location to location E by the latest start time of A22.
Otherwise, until either of the reservations for A1 or A2 is modified or retracted, the new activity
cannot be inserted into that interval.

3.2.2.5 Place Components

A stationary place resource in Comirem can serve as its own resource and also provide a col-
lection of component resources that reside at its location. A typical example is an airport,
which can provide runways and aircraft-parking areas that can be reserved individually. Such
components can also be uncapacitated, in which case they provide unlimited capacity—at a par-
ticular location—specified in terms of capability, resource type or model type. Components
are allocated to events that require their capacity and reference their corresponding place (i.e.,
component capacity at place P can only be allocated to events with a <place>P</place> tag).

Figure 19 presents a collection of XML forms that demonstrate: (1) the definition of a place-
component resource type called working-MOG, (2) a capacitated instance of working-MOG called
embassy-yard located at an embassy place instance, (3) the embassy place instance showing
embassy-yard as a component, (4) a place instance called home-station providing unlim-
ited (i.e., uncapacitated) working-MOG capacity, and finally, (5) an activity type called load-
step that requires working-MOG capacity. Simply put, this example describes two sources of
working-MOG capacity that may be used by instances of the load-step activity type. If working-
MOG is required from the embassy location, it must come from the embassy-yard place compo-
nent and be allocated by the scheduler depending on its availability. If, on the other hand,
working-MOG is required from the home-station location, it is automatically available without
any interaction with the scheduler, because its capacity is unlimited.

Places can be defined as part of either a situation (i.e., within the situation-instances.xml
data file) or a scenario (i.e., within the scenario-plan.xml data file). The distinction is subtle
but relevant. The determining factor is whether the place is conceptually a part of the bed-
down information that comprises a situation or is a location specific to a particular scenario.
For example, a default bed-down situation may define a collection of military aircraft wings
deployed among a number of bases to be used by a range of scenarios. In this case, the scenario
must conform to the constraints dictated by the geographic placement of the resources defined
in the situation. In the latter case, places are locations that are specific to the scenario, in
that they define points in the plan where actions are expected to occur, and can be legitimately
referenced within the plan. In most cases, it is to be expected that some places will be defined
as part of the situation while others are specific to, and defined as part of, a particular scenario.
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Defines the working-MOG
place-component resource
type, giving it a maximum
serving capacity of a single
AIRCRAFT:

Defines an instance of a
working-MOG place-
component called embassy-
yard to be located at an
embassy place instance
(defined below), with
unitary capacity and
unlimited availability:

Defines the embassy
place instance listing the
embassy-yard as a
(capacitated) place-
component:

<instance>
  <component name="embassy-yard">
    <type-ref>working-MOG</type-ref>
    <placement>embassy</placement>
    <capacity-list>
      <capacity-interval
        <start-time>20010101T000000</start-time>
        <end-time>:infinity</end-time>
        <units>1</units>
      </capacity-interval>
    </capacity-list>
  </component>
</instance>

<instance>
  <place name="home-station">
    <type-ref>base</type-ref>
    <placement>
      <location latitude="37.08" longitude="-122.07"></location>
    </placement>
    <uncapacitated-components>
      <resource-class>working-MOG</resource-class>
    </uncapacitated-components>
  </place>
</instance>

<instance>
  <place name="embassy">
    <type-ref>base</type-ref>
    <placement>
      <location latitude="38.17" longitude="-122.3"></location>
    </placement>
    <components>embassy-yard</components>
  </place>
</instance>

Defines the home-station
place instance providing
uncapacitated working-
MOG capacity:

<type>
  <component name="working-MOG">
    <configurations>
      <configuration name=":default">
        <cargo max="1">AIRCRAFT</cargo>
      </configuration>
    </configurations>
  </component>
</type>

<type>
  <event name="load-step">
    <requirements>
      <requirement>
        <resource-class>working-MOG</resource-class>
      </requirement>
    </requirements>
  </event>
</type>

Defines the load-step
(event) activity type
requiring working-MOG
resource capacity:

1

2

3

4

5

Figure 19: Annotated XML specifications of (un)capacitated places and place components
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3.2.2.6 Taskforces

Somewhat analogously to the way in which multiple activities can be grouped together into
threads (as described in Section 3.2.1.5, Threads), Comirem also supports the aggregation
of resources into high-level taskforces. A taskforce is a collection of resources that have been
grouped together for a specific period of time, during which they can be allocated collectively—
to threads—as a single resource object. Taskforce resources are required to be either mobile
resources or movable (i.e., non-place-component) stationary resources that can be transported,
since they must be able to move, or be moved, from location to location as required by a thread.
Certain predefined mobile resource classes (e.g., those that are typically sourced from base loca-
tions) may require that additional positioning and depositioning legs be instantiated to deliver
them to the starting location of a thread and back from the ending location. Mobile resources
that are not positionable are required to already be located at the start location for the thread
to which the taskforce will be assigned.

The resource-aggregation capability provides two key benefits:

1. Scheduling efficiency through aggregation:

The definition of a taskforce facilitates the allocation of a single collection of resources to
perform a sequence of activities comprising a thread, so that Comirem need not allocate
each individual resource to the thread.

2. Explicit and detailed tracking of constituent resources:

Constituent resources within a taskforce can be easily located over time as threads are
scheduled and executed. Since taskforces are treated as single objects, their specific make-
up can be ignored at the scheduling level. But their make-up is recorded explicitly, and can
therefore be used to rapidly determine both where a specific constituent resource is located, and
which constituent resources are present at a location, at any point in time. For real-time battle
management, these are important queries to be capable of answering.

The duration of a taskforce depends on the thread to which it is allocated.17 Until it is allo-
cated to a thread, a taskforce’s duration is unbounded. Throughout the duration of a taskforce,
its constituent resources may not be allocated to any other activity or taskforce, in which case, if
a taskforce has not yet been allocated to a thread, its constituents can only be allocated to that
taskforce. Once a taskforce’s bounds have been set by its allocation to a thread, its constituent
resources are free to be allocated to other activities and taskforces whose temporal bounds do
not overlap those of the taskforce to which they are already assigned.

Constituent resources are available for use by any and all activities within the thread to which
they are allocated. Since the constituents are required to be mobile in nature, they are assumed
to be able to travel from location to location as dictated by the thread’s activity sequence. And
since a thread’s activity sequence is precluded from allowing overlap, there is no possibility of
two activities within a thread attempting to use the same resource at the same time.

Figure 20 illustrates the relationships between a taskforce, its constituent resources, and a
thread. Like a typical Comirem resource, each taskforce maintains its own timeline upon which

17Currently, Comirem restricts taskforces from being assigned to more than a single thread. One way around this
restriction, however, is to define multiple taskforces, assign each to a desired thread, and then allocate the same
set of constituent resources to each taskforce.
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its thread assignment is placed, like a regular resource reservation. When a resource joins a
taskforce, a taskforce-participation-event is placed on its timeline, with its duration and flexibil-
ity dictated by the duration and flexibility of a thread possibly assigned to the taskforce (via
multiple same-start and same-finish temporal constraints), and whether or not derivative
(de)positioning legs are required. If no thread has been assigned to the taskforce, the dura-
tion of the taskforce-participation-event is unbounded, and there is no flexibility (i.e., the taskforce-
participation-event reservation takes up the resource’s entire timeline).

The overall feasibility of a taskforce assignment (to a thread) is dependent on the timelines
of its constituent resources and the requirements of the thread to which it may be assigned.
Additionally, the existing timelines of the constituent resources assigned to a taskforce constrain
the extent of both the taskforce and the thread to which it may be assigned.

Positionable
Mobile
Resource 2

Stationary/Non-
positionable
Resource N

Positionable
Mobile
Resource 1

Taskforce 1

time

same-start
[0,0]

same-finish
[0,0]

Thread

Taskforce 1 / Resource 1
Participation Activity

Taskforce 1 / Resource 2
Participation Activity

Taskforce 1 / Resource N
Participation Activity

positioning-legs depositioning-legs

Pos

P

Depos

Dep

EVENT

EVENT

timeline

existing
reservations

Figure 20: Taskforce structure and relationships to thread and resource timelines

It should be noted here that currently there are some limitations on the means by which
taskforces are defined in Comirem. Specifically, taskforces must be assembled by hand using
the Resource & Taskforce Manager in the Comirem GUI (described in Section B.4.2).18

An example of the use of threads in Comirem can be found in the description of the Embassy-
Rescue domain presented in Section 5.2, in which three taskforces are defined to undertake

18Augmentation of the Comirem data file XML formats (described in Appendix A) is anticipated to allow task-
forces to be specified declaratively as part of an input situation.
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three different threads comprising a mission to rescue personnel from a United States embassy
on foreign soil.

3.2.3 Constraints

In addition to the previously mentioned constraints on activities and resources, Comirem pro-
vides the ability to synchronize activities (and by extension, threads) using three different kinds
of constraints. A set of temporal sequencing constraints governs the relationships between ac-
tivities, a reference-hour constraint facilitates the linking of activities to movable time points,
and an anchoring constraint facilitates the placement of lower and upper bounds on the start
and finish times of activities. These constraint types are described in the following subsections.

3.2.3.1 Temporal Sequencing Constraints

To support the relative sequencing of activities, Comirem implements a set of canonical binary
temporal relations, such as before, same-start and same-finish, and overlaps and contains. These
relations enforce sequencing rules while attempting to preserve flexibility within the time bounds
of constrained activities.

Figure 21 illustrates the before constraint (also called successor), which can also be used to
implement an after relation, by reversing the order of the activities. The before constraint, cou-
pled with a [lb,ub] temporal range, forces one activity (i.e., A2) to start within a time window
offset—shown in red—from the end time of another activity (i.e., A1). Note that if the lower
bound is negative, then overlap between the activities is allowed.

A1 before A2  [lb,ub]

A1

ET(A1)+lb ET(A1)+ub

ET(A1) ST(A2)

A2

ST(A2)

before( A1, A2 lb, ub )

�ET�A1� � lb� � ST�A2� � �ET�A1� � ub�

default values: [lb,ub]: [0,�]

Figure 21: Successor (also before and after) constraint
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In Figure 22, the same-start and same-finish constraints are illustrated. In the left half of the
figure, the same-start relation forces one activity (i.e., A2) to start within a time window offset—
again shown in red—from the start time of another activity (i.e., A1). In the right half of the
figure, the same-finish relation forces one activity (i.e., A2) to finish within a time window offset
from the end time of another activity (i.e., A1). Note that a negative lower bound on the same-
start constraint permits A2 to actually start before A1, and that a negative upper bound on the
same-finish constraint permits A2 to actually finish after A1.

A1 same-start A2  [lb,ub]

ST(A1)+lb ST(A1)+ub

ST(A1)
ST(A2)

A1

ST(A2)

A2

A1 same-finish A2  [lb,ub]

ET(A1)+lb ET(A1)+ub

ET(A1)
ET(A2)

A2

A1

ET(A2)

same-start( A1, A2, lb, ub ) same-finish( A1, A2 lb, ub )

�ST�A1� � lb� � ST�A2� � �ST�A1� � ub� �ET�A1� � lb� � ET�A2� � �ET�A1� � ub�

default values: [lb,ub]: [0,�] default values: [lb,ub]: [��,0]

Figure 22: Same-start and same-finish constraints
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Figure 23 illustrates the overlaps and contains constraints. In the left half of the figure, the
overlaps relation forces one activity (i.e., A2), to start within a time window offset from the end
time of another activity (i.e., A1). In the right half of the figure, the contains relation forces one
activity (i.e., A2), to both (1) start within a time window offset from the start time, and (2) end
within a time window offset from the end time, of another activity (i.e., A1).

A1 overlaps A2  [lb,ub]

ET(A1)+lb ET(A1)+ub

ET(A1)
ST(A2)

A2

A1

ST(A2)

A1 contains A2  [lb1,ub1,lb2,ub2]

ST(A1)+lb1 ET(A1)+lb2

ST(A1) ET(A1)
ST(A2) ET(A2)

A2

A1

ST(A1)+ub1 ET(A1)+ub2

ST(A2) ET(A2)

overlaps( A1, A2, lb, ub ) contains( A1, A2 lb1, ub1, lb2, ub2 )

�ET�A1� � lb� � ST�A2� � �ET�A1� � ub� �ST�A1� � lb1� � ST�A2� � �ST�A1� � ub1�

default values: [lb,ub]: [��,0] � �ET�A1� � lb2� � ET�A2� � �ET�A1� � ub2�

default values: [lb1,ub1]: [0,�]

[lb2,ub2]: [��,0]

Figure 23: Overlaps and contains constraints

In all of these cases, the default [lb,ub] values are set to enforce a strict interpretation of the
constraint relation. As has been pointed out, however, these relations can be relaxed through
the specification of different lower and upper bounds.
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The basic attributes of the five temporal sequencing constraint types are described in Ta-
ble 6. The XML format for specifying instances of these constraints as part of a scenario-plan.xml
data file is presented in Section A.1.4.1.

Table 6: Temporal sequencing constraint attributes

� Type-Ref [required]

Indicates the type of constraint: must be one of successor, before, same-start,
same-finish, overlaps or contains.

� From � From-Type [required]

Identifies the set of activities from which the constraint originates (corresponding
to the A1’s in Figures 21, 22 and 23)

Notice that activities can be identified by name (using the From attribute), or by
type (using From-Type). The latter is used primarily for specifying sequencing rela-
tions among child activities, in which case the types of the children must be unique.

� To � To-Type [required]

Identifies the set of activities to which the constraint is directed (corresponding to
the A2’s in Figures 21, 22 and 23)

To-Type is used analogously to From-Type.

� LB [optional]

Provides the lower bound on the time window for a constraint

� UB [optional]

Provides the upper bound on the time window for a constraint

3.2.3.2 Reference Hour Constraints

To achieve a possibly tighter degree of synchronization of activities, Comirem provides reference
hour (or ref-hour) constraints for linking sets of activities to a relative date, which can be assigned
to a particular point in time and shifted as necessary. An activity can be linked to a ref-hour by
either its start or finish time, or both. These links define what we call the preferred start and
finish times for the activity.

One benefit of the reference hour constraint type is the ability to define collections of activ-
ities (i.e., plan fragments) whose temporal bounds can be manipulated collectively by shifting
a single reference point in time. This capability is ideal for defining the N hour and H hour syn-
chronization points typically used in military plans. During the planning/scheduling process, if
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H hour is shifted by a day, then the preferred start/finish times of all activities linked to H hour
will similarly be shifted by the same amount.19

Another benefit of the ref-hour constraint derives from the fact that each reference hour
maintains its own flexible time window (defined by upper and lower-bound offsets from the ref-
hour’s time point), which establishes a “level of precision” with respect to the synchronization
of activities (the default is �3 minutes). If the preferred start/finish times of linked activities
occur within this level of precision (or tolerance) as execution unfolds, a plan is considered to be
executing as planned.

The relationship between a reference hour, calendar zero, and a linked activity is illustrated
in Figure 24.
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Figure 24: Reference hour constraint representation

19Note that the flexibility of a reference hour is collectively constrained by its linked activities, so that it may only
be shifted as long as sufficient flexibilityfor those activities exists in the schedule.
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3.2.3.3 Anchoring Constraints

Anchoring constraints introduce lower and upper bounds on the start and finish times of ac-
tivities, for defining not-earlier-than (i.e., NET or EST/EFT) and not-later-than (NLT or LST/LFT)
temporal relations. Release dates and due dates are typical anchors: a release date imposes an
EST constraint on the initial activities in a plan, while a due date imposes an LFT constraint on
the final activities in a plan. Anchoring constraints are specified for activity instances using the
EST, LST, EFT and LFT attributes described in Table 2. The anchoring constraint representation
is illustrated in Figure 25.

CZ
calendar zero

start
time range

finish
time range

EST constraint
e.g., a Release Date

LFT constraint
e.g., a Due Date

ACTIVITY

timeline

Figure 25: Anchoring constraint representation

3.2.4 Capabilities

As mentioned in Section 3.2 (Conceptual Model), Comirem supports both the direct mapping
of activities to their required resources and the indirect mapping via capabilities, which collec-
tively define a high-level categorization of resource types according to the kinds of services they
provide (e.g., heavy and light transport, airlift, close air support).

Capabilities are defined in a situation-capabilities.xml input data file using the attributes
and tags described in Table 7. Figure 26 provides an example of some standard SOF-related
capabilities, which follow the XML grammar described in Section A.4.
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Table 7: Capability attributes

� Name [required]

The name of the capability, for reference in the resource-requirements of activities
and the configurations of resources

� Capable-Types [required]

The set of resource-classes that can deliver the capability

The mapping between capabilities and resources need only be specified in one
direction (i.e., from capability to resource using this tag, or from resource to ca-
pability using the capabilities or configurations tags; Comirem will fill in the
missing inverse links.

� Type-Ref [required]

Characterizes the capability as applying to either a move or event activity

This tag is primarily for helping to organize and present information to the user
in a meaningful fashion - i.e., so that capabilities related to movement are only
offered as options for move activities, and capabilities related to stationary actions
are only offered as options for event activities.

<capability name="heavy-transport">
  <capable-types>MC-130H C-141</capable-types>
  <type-ref>move</type-ref>
</capability>

<capability name="light-transport">
  <capable-types>MH-60 MH-47</capable-types>
  <type-ref>move</type-ref>
</capability>

<capability name="air-drop">
  <capable-types>MH-60 MC-130H</capable-types>
  <type-ref>move</type-ref>
</capability>

Figure 26: XML specifications for capabilities
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3.2.5 Plans

A plan in Comirem is a collection of activities defining a single, coordinated mission. The sce-
nario-plan.xml file in which a plan is defined contains the activity and constraint instances that
describe the actions needing to be taken and the order in which they must be performed. Once
loaded into an existing situation, the feasibility of a plan/scenario can be ascertained through a
process of either automatic or manual interactive scheduling.

The last remaining data fragment used in specifying a plan is the plan configuration, which
provides the necessary temporal information for interpreting the scenario-plan.xml data file.
The various attributes for the configuration tag are described in Table 8 and follow the XML
grammar described in Section A.5.

Table 8: Plan-configuration attributes

� Display-Name [optional]

An appropriate display name for the plan (i.e., for use in the GUI)

� Calendar-Zero [optional]

The base time value for all times specified within a plan

This value is relevant whenever the times in a plan are specified as integer values,
in which case each such value represents an absolute time (i.e., not an offset). (It
is preferable to specify times consistently within a plan, i.e., either as integer values
or explicit dates/times.) The default is 0.

� Calendar-Zero-Date [optional]

A calendar date/time for initializing Comirem’s calendar-zero value

Integer time values within a plan are mapped into Comirem’s internal temporal
representation, which maintains its own calendar-zero.

The default is the value of Comirem’s (time-today) function.

� Ref-Hours [optional]

Specifications of all ref-hours for a plan

Ref-hour specifications include the name of the ref-hour, its time point, and its
delta value, which is used to provide a window of temporal flexibility around the
time point.

� Plan-Horizon [optional]

The horizon for the plan The default is 24 hours.

� Time-Granularity [optional]

The temporal granularity of the plan The default is ‘seconds.’
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3.3 Scheduler

Comirem takes a flexible-times approach to allocating resources to activities over time. Activities
in the plan are allowed to float within the time bounds that are permitted by current problem
constraints, and the feasibility of various resource assignments is ensured by sequencing any pair
of activities that are assigned the same resource. This approach can be contrasted with most
current scheduling tools, which ensure resource feasibility by assigning fixed start and end times
when allocating resources to activities. Fixed-time scheduling can simplify the enforcement of
various resource usage constraints but it also generally implies considerable overcommitment.
Under a flexible-times scheduling approach, alternatively, greater flexibility is retained. At both
plan development and plan execution stages, this minimizes the need for change.

3.3.1 Managing Temporal Constraints

Within this flexible-times framework, temporal constraint propagation and consistency enforce-
ment is achieved by encoding various elements of the plan as a Simple Temporal Problem (STP)
constraint network [Dechter et al., 1991], and applying an incremental STP constraint network
solver. Briefly, temporal constraints are represented in an underlying graph G �N, E �, where
nodes in N represent time points, and edges in E are distances (labeled as [lower bound, up-
per bound ] pairs) between the time points in N. A special time point, called “calendar zero,”
grounds the network and has the value 0. The network maintains lower and upper bounds
on the time points by propagating the bounds on the distances of the edges. Activities, ref-
hours, anchors and temporal sequencing constraints are uniformly represented as temporal
constraints (i.e., edges) between relevant start and finish time points, as depicted in Figure 27.
Planning/scheduling decisions generally correspond to the introduction of new constraints into
the network (e.g., sequencing two activities that have been assigned the same resource) or the
adjustment of existing constraints (e.g., refining the duration of an activity, moving an anchor).
In either case, constraint propagation updates the bounds of affected nodes and checks for
cycles in the resulting network. The lack of any such cycle ensures continued temporal feasibil-
ity of the plan. Otherwise a conflict has been detected, and backtracking (or some amount of
constraint relaxation) is necessary.

3.3.2 Managing Resource Constraints

As implied above, basic resource feasibility is maintained by enforcing a disjunctive constraint
on the execution of any two activities utilizing the same resource. If two such activities would
otherwise have potentially overlapping execution windows, preservation of feasibility requires
that an explicit sequencing constraint be introduced. Note that for an activity requiring several
resources, this can imply several distinct links.

Comirem provides a number of more specialized resource constraint management tech-
niques, aimed at satisfaction of additional resource usage constraints:

� Resource Location
To support a given move activity, a resource must be at the activity’s origin location at its
start and will be at the destination location at its finish. Depending on the location of the
resource prior to its allocation to this activity, a supporting positioning activity might be
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Figure 27: STP constraint network fragment with superimposed activities

necessary and likewise, depending on its subsequent obligations, depositioning might be
necessary. As discussed earlier, a move activity expansion typically includes provisions for
such derivative activities. As a given resource is assigned, location constraints are enforced
by appropriately adjusting relevant duration constraints.

� Resource Carrying Capacity
A given move activity specifies a manifest quantity which, together with the carrying ca-
pacity of available resources, will ultimately determine how many trips will be required
and how long the overall move will take. When resources of a given type are allocated to
a given activity, sibling activity networks are created and instantiated to correspond with
each required trip. Depending on the number of resources actually available, these trips
may occur in multiple waves, with some resources being reused.

3.4 Mixed-Initiative Resource Management

The above constraint management and scheduling procedures are configured to provide a range
of interactive and semi-automated resource management capabilities within Comirem. Gen-
erally speaking, Comirem is designed to provide a graphical spreadsheet-style model of user-
system interaction, where the user opportunistically manipulates various planning and plan
data (e.g., requirements and capabilities, resource allocation decisions) and the consequences
of user changes (e.g., updated sets of decision options, instantiation of implied derivative activ-
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ity networks) are made apparent. The user can selectively employ more automated capabilities
(e.g., requesting resource feasibility checking and auto-scheduling for larger fragments of the
developing plan), in which case the resulting “propagation of effects” of a user action can be
significant (and may involve heuristic choice). Also following the spreadsheet metaphor, the
user can change her mind at any point, retract one or more prior actions, and resume the plan-
ning process in another direction.

The current planning focus in Comirem is on the problem of assigning resources to a (possi-
bly evolving) plan and then managing these assignments as execution of the plan moves forward.
Input to the system takes the form of an initial plan sketch that specifies, at some level of abstrac-
tion, the actions necessary to accomplish certain end goals for a given scenario. Figure 28 gives
an example of the type of problem of interest. It graphically depicts a plan for evacuating citizens
from an embassy in a foreign country. The same plan is shown from an activity-centered per-
spective in Figure 29. Following an initial staging activity, the Embassy-Rescue plan consists
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Figure 28: Embassy rescue scenario

basically of three parallel threads: one aimed at securing a local airport for eventual extrac-
tion (Seize-Airport), one concerned with blocking the advance of hostile forces to the airport
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Figure 29: Embassy-Rescue plan

(Defend-Bridge) and a final thread aimed at transferring citizens from the embassy (where they
have congregated) to the airport (Evacuate-Embassy). Once at the airport, everyone is flown
out and returned home.

Several of the activities in this plan, specifically the moves, require various transport and
combat capabilities. Input constraints also specify initial assumptions concerning the locations
and availability of various air and land assets. Additionally, each thread of the plan presumes
an independent taskforce, which must be configured from available personnel. Starting from
the initial plan, Comirem assists the user in allocating resources to input activities. In cases
where feasible assignment entails the generation of resource support plans (e.g., for positioning
an aircraft to the location where it is needed), Comirem adjusts these activities accordingly as
specific resource assignments are considered. If the overall process is successful, the result is
a detailed plan where each activity is assigned the resources it requires and is designated to
execute in a specified finite time interval.

Using the Embassy-Rescue plan as a reference, we now summarize the key functional capa-
bilities provided in Comirem for intelligently assisting the user in addressing resource-allocation
problems of this nature.

3.4.1 Interactive Planning and Resource Allocation

The problem at earlier stages of the planning process is one of reconciling an input concept of
operations, represented as a set of inter-related activities, with a heterogeneous set of available
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resources. Activities specify required capabilities, which may be provided by one or more types
of available resources. Figure 30 shows the Embassy-Rescue plan as presented by the web-
browser-based Comirem GUI. Here we are looking at a “vector” display of the plan, where the
background horizontal bars represent locations over time, diagonal lines represent moves from
place to place, and horizontal lines represent events occurring at a location.

Derivative moves
(e.g., [de]positioning legs)

are shaded gray

Events                    Moves
Green indicates either resource(s)
assigned or no resource(s) required;

yellow indicates unassigned
Places

Figure 30: Annotated Comirem GUI display of Embassy-Rescue plan

Given this input state, Comirem provides the following support for refining and sourcing a
given plan:

� Option Generation
For each unassigned activity in the plan, Comirem maintains the current set of feasible
allocation options. Figure 31 shows the situation for the initial position-for-insertion
activity of the plan. There are two feasible choices: three MH-47 helicopters or nine MH-
60 helicopters. The numbers required reflect the size of the manifest to be transported
(i.e., the number of troops in the assigned taskforces: alpha and bravo) and the respective
carrying capacities of the assets; the durations given reflect the quantities available, their
speed, and their locations.
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Figure 31: Option generation and selection

� Visualization of Decision Impact
As the user elects to commit to a given option, impact of this assignment is reflected in the
plan. Figure 32a, for example, shows the MH-47 assignment (where three helicopters will
fly in tandem). Since these assets are initially based at home-station, there is no need for
a positioning flight; but a depositioning flight has been added. In Figure 32b the impact of
alternatively choosing the MH-60’s is shown. In this case availability constraints force the
activity to be performed in two waves of seven and two trips (and hence the significantly
longer duration). A comparison of the utilization of the three MH-47’s and the seven
MH-60’s is shown in Figure 32c.

Other visual cues provide information about the constrainedness of the current planning
search space. The vector display can be re-colored to indicate decision criticality (a func-
tion of how many resource assignment options remain). Similarly, the display can be
toggled to show the degree of temporal flexibility associated with different activities; Fig-
ure 32 actually shows the earliest execution interval of position-for-insertion.

� Requirements and Capabilities Editing
Both activity and resource attributes can also be edited to alter the constraints and re-
quirements of the problem. In Figure 31, the position-for-insertion activity is shown
to require a light-transport capability (shown in red), which maps to either of the heli-
copter types mentioned earlier. Through selection in this display, the user is free to adjust
these requirements, either specifying alternative or additional capabilities or platforms
that might be viable to consider. Any adjustments result in a corresponding update of
feasible options. Other timing constraints on activities (e.g., deadlines or synchronization
points) can similarly be manipulated to open up (or restrict) the set of options.

Resource attributes can similarly be manipulated to vary basic problem assumptions. For
example, the numbers of resources available and their initial locations can be revised to
evaluate the consequences of an alternative deployment. In Figure 33 we show an edit-
ing action to introduce the constraint that only one aircraft can be on the ground at a
time at location staging-area (whereas it had previously been specified as unconstrained).
Figure 34 shows the consequence on the position-for-insertion activity: the three
MH-47 flights now must unload in a staggered fashion.
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Figure 32: MH-47 and MH-60 assignment options and utilization profiles for the position-
for-insertion activity
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Figure 33: Imposing a maximum-on-ground (MOG) constraint

Three MH-47 helicopters arriving and
departing sequentially at staging-area

Figure 34: Revised MH-47 assignment for the position-for-insertion activity following the
tightening of the staging-area MOG constraint

� Automated Assignment and Feasibility
The user can selectively rely more on system decision procedures. For any selected set of
unassigned activities in the plan, the user can invoke an underlying automatic scheduler
to generate a feasible assignment. This action constitutes a check of the overall resource
feasibility of the plan (assuming whatever decisions have been previously fixed by the user).
The allocation goals and preferences that focus the automated scheduler can be adjusted
by the user to produce different sets of resource assignments, in scenarios where overall
resource capabilities contain this flexibility.

� What-If Analysis
As implied by much of the discussion above, most constraints and planning decisions are
pliable through the interface to allow general exploration of the problem and solution
space. The system provides a general ability to undo any user-level action (or sequence of
actions) previously taken. Coupled with the above described capabilities, this mechanism
provides a flexible, open-ended framework for what-if analysis.
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3.4.2 Resource Configuration

Complementary capabilities for interactively configuring aggregate resources (taskforces in our
Embassy-Rescue scenario) from more primitive resource objects (in this case, individual person-
nel) are provided through a drag and drop interface as shown in Figure 35. When a resource
is added to an aggregate under development, the system checks basic availability constraints.
When an aggregate resource is assigned to a thread, this resource and all of its constituents be-
come otherwise unavailable for allocation over the period that the thread executes. Hence, just
as in the case where primitive resources are allocated, the potential addition of a resource to an
aggregate resource or the potential assignment of an aggregate resource to a thread may be in-
feasible due to prior commitments, or likewise, may require additional sequencing of competing
activities in the plan.

Comirem computes and
maintains the set of feasible
taskforces to which a selected

resource may be assigned

Figure 35: Annotated taskforce composition form
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3.4.3 Conflict Analysis and User-Oriented Explanation

User acceptance of system decisions in successful problem-solving episodes and effective user
involvement in circumstances where a system reaches a problem-solving impasse both require
that a system be comprehensible. This requirement, in turn, implies that a system be capable
of explaining its decisions in user-understandable terms. Our previous work has argued for the
use of a scheduling domain ontology as a basis for translating user problem specifications into
internal system models [Smith and Becker, 1997]. Recent work with Comirem has focused on
a complementary use of a domain ontology to compute user-oriented explanations of system
decisions and conflicts [Smith et al., 2004]. The central idea is to use Comirem domain ontology
knowledge to (1) compute the set of user-relevant and manipulable constraints that form an
explanation, (2) identify various constraint-relaxation options that the user might consider to
resolve a conflict, and (3) provide content for generating user-understandable explanations of
conflicts and possible resolving actions.

Figure 36 shows the system’s response in a situation where it has detected that it is not
possible to complete an activity by its imposed deadline if the assigned resource is used. In
this case, knowledge relating temporal constraints in the underlying STP constraint network
to various domain level constructs (e.g., activity and relation types) is used to filter the set of
constraints found to be in conflict by the temporal constraint propagator and identify the subset
that is user manipulable. Once this subset of constraints is identified, knowledge associated
with corresponding domain entities is used to propose possible constraint relaxation options.
The user can then choose from this set of proposed options.

3.4.4 Execution Management

Finally, Comirem provides additional tools for managing resources and resource assignments as
execution unfolds:

� Resource Tracking
A “magboard” UI display (shown in Figure 37) provides a geographical visualization of
the location of all resources at any given point in time. The display distinguishes those
resources that are (1) in-transit from one location to another, (2) at a location but en-
gaged in some activity (e.g., providing air cover support, securing an airport), or (3) at a
location and available for use.

� Plan Tracking
Both the vector display of the plan (and an additional Gantt-based view) can also be used
to visualize the current state of execution. As information about the actual start and end
of activities is received, the executing frontier of the plan is highlighted and any conflicts
between the actual and expected course of events are signaled.
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[a]
[b]
[c]

LFT (Move)EST (Move)
EFT (Move: w/MH-47)

Destination

Origin

Conflict: Duration(Move w/MH-47) > LFT(Move) - EST(Move)

EFT (Move: w/MH-60)

Negative Cycle:
140 minutes

[a] Override the domain constraints based on deeper strategic
     information (e.g., favorable weather conditions)
[b] Extend LFT(Move) by 140 minutes to account for the MH-47
     duration constraint
[c] Assign the faster MH-60 resource to Move

Summary of duration conflict:

Comirem GUI duration conflict resolution options:

Explanation of duration conflict resolution options:

Figure 36: A sample duration conflict and corresponding Comirem-generated resolution op-
tions
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Figure 37: Annotated Comirem GUI Magboard screen shot
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3.5 Scheduler Architecture

An overview of the underlying Comirem system architecture is presented in Figure 38. The plan-
ning/scheduling engine is implemented in Common Lisp [Steele Jr., 1990] as an extension of the
platform-independent Ozone scheduling framework [Smith et al., 1996].20 It operates together
(i.e., as a sibling Lisp process) with a Common Lisp HTTP server,21 which facilitates the trans-
mission of either: (1) dynamically generated HTML/XML responses or (2) files from disk (e.g.,
HTML/XML documents) to an Internet browser client using standard CGI (Common Gateway
Interface), and is used to support both visualization and interactive development of plans and
schedules. The coupling of the core planner/scheduler with a web server provides immediate
interoperability with most any web browser (and by extension, nearly any hardware platform),
and even more importantly, the broad range of existing interactive visualization tools and appli-
cations designed to work with them. The Comirem system is therefore able to take advantage
of the wealth of web-based visualization tools that already exist and allow the user to interact
with it using whatever tool is best suited for the present circumstances (e.g., hardware consid-
erations, user preference).

Common LispInternet Browser

Browser Plug-In Comirem
Planner / Scheduler

Database of Problem Data
and Saved Plans & Schedules

Client Processor Host Processor File Server

Comirem GUI Common Lisp
Hypermedia (Web) Server

URL / CGI

/ CGI

File I/O

Data Flow
Process Flow

Figure 38: Comirem system architecture showing process and data flows

20
Comirem runs on the Apple MacOS X, Microsoft Windows and Sun Solaris platforms.

21Both AllegroServe in Allegro Common Lisp and CL-HTTP in Macintosh Common Lisp are supported.
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Comirem is presently capable of interacting with three different types of visualization and
interaction tools.

� A Shockwave application serves as the primary user interface component (see the Client
Processor on the left in Figure 38). This choice reflects an underlying objective to explore
the potential of more modern web-based design tools for interactive visualization and
manipulation of plans and schedules. This application was built using Macromedia’s
Director program and the Lingo scripting language, and is executable in any common
web browser using the freely available Shockwave plug-in application.

� The architecture also supports the use of standard HTML/XML forms as an information
display and input medium. We envision such interface components as being particu-
larly necessary in some mobile circumstances, where screen real estate and computational
considerations may prohibit extensive graphical interface capabilities. Within the current
Comirem interface, forms are provided for adding, retracting and editing various plan
constraints and resource assignments.

� Finally, provision is made to interact and interoperate with externally developed Java ap-
plets.22 In general, our current user interface design perspective is to de-emphasize Java
components in favor of an expanded functionality Shockwave application. While inter-
operability with Java applets is important given their widespread use in web application
environments, our experience to date nonetheless indicates that Shockwave offers the po-
tential for much more lightweight software components (i.e., smaller footprint, no run-
time library support required).

Each of these interfaces communicates with the Comirem server via standard HTTP proto-
col (currently HTTP/1.1). Requests from browser clients are encoded as URLs and transmitted
to the server, and HTML/XML responses are then generated (or uploaded from disk) and re-
turned to the client web browser using CGI. (Direct peer-to-peer socket communication with
the Comirem server is also supported, in case interaction with an encapsulated Java-based ap-
plet is required.) For the most part, interaction with the Comirem planner/scheduler is simply
achieved by launching a web browser and requesting a specific web page.

22An early version of Comirem relied on the use of Java applets adapted from another Ozone-based system to
display resource capacities.
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4 Interoperability with the SOFTools Environment

Comirem has been integrated with a collection of other tools developed for the SOF domain,
including SOFTools (an interactive plan-authoring tool) and C2PC (an interactive mapping pro-
gram). Comirem accepts XML-formatted plan data files from SOFTools, performs resource-
feasibility-checking on the plan, and exports “magboard”-style output data for display in C2PC.

4.1 Temporal Plan Editor

SOFTools is a collection of mission planning and editing tools developed by BBN (initially) and
General Dynamics Advanced Information Systems to allow a (human) planner to create and an-
alyze plans in the SOF domain. The planner establishes
the temporal representations of a mission plan and any
related supporting plans using SOFTools’ Temporal Plan
Editor by defining movements and events at various loca-
tions and times. These plans represent a high-level view
of a developing plan, in which the times are essentially
estimates based on expected plan locations and resource
assignments. Interaction with Comirem begins with the
translation and import of the SOFTools-generated plan
file, which permits Comirem to evaluate both the resource
and temporal feasibility of the SOFTools plan under a Temporal Plan Editor screen shot
range of resource-availability situations.

The key features of the interaction between SOFTools involve the translation of the input
data and the resource and temporal feasibility-checking, summarized below:

� Translation of input data:

SOFTools allows the planner to assign estimated departure and arrival times to move-
ments and events in a plan and to attach certain resource quantities to these activities—
without any consideration of actual resource availability. There are no explicit temporal
sequencing constraints and the anticipated activity durations are all estimates that are
based on expected locations and typical resource traveling speeds. For the purpose of an-
alyzing this data, Comirem has been equipped with a module that translates—with some
necessary modification—SOFTools plan data into Comirem-acceptable form.

� Resource and temporal feasibility-checking:

Once a SOFTools plan has been translated into Comirem format (a process that is per-
formed automatically whenever a SOFTools plan (scenario) is loaded), Comirem is ideally
suited to perform the necessary resource and temporal feasibility checks to assure that a
plan is generally feasible given a particular resource-availability situation. The following
checks are performed:

– Resource availability is evaluated by: (1) ensuring that all required resources are, or
will be, placed at the locations required by the activities to which they have been
assigned, and (2) that sufficient resource capacity is available to satisfy the desired
assignments.
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– Temporal feasibility is evaluated by applying a more strict domain model to the esti-
mated activity durations that relies on detailed resource models and more accurate
distance-based movement-duration calculations.

4.2 Check List Editor

Interaction with SOFTools’ Check List Editor (CLE) provides an additional means for assessing
feasibility in plans, by adding the possibility of having to consider actual execution results.
The CLE allows planners to augment a SOFTools plan
with runtime information that indicates (among other
things) when an activity has begun or completed execu-
tion. Comirem is capable of accepting calltimes (i.e., ac-
tual start and end times for activities) and factoring those
times into its resource and temporal feasibility-checking
routines. Calltimes are treated by Comirem as hard (i.e.,
non-relaxable) temporal constraints that compress activ-
ity time windows down to the absolute minimum. Ad-
ditionally, the processing of calltimes causes Comirem to
update its internal clock, which prohibits it from recon-
sidering decisions made in the past, and further tightens Check List Editor screen shot
the temporal flexibility of the plan.

4.3 Command and Control Personal Computer

Command & Control Personal Computer (C2PC), developed by Northrop Grumman, is an in-
teractive mapping application that provides a geographically based situational-awareness capa-
bility that can be used to track assets over time in support
of operational and tactical decision-making. Comirem in-
teracts with C2PC using overlays, which are data files that
are continually monitored by C2PC and (re)displayed im-
mediately when modified. Overlay files allow the chang-
ing positions of assets to be displayed in animated form
over time. Using its own Magboard display (see Figure 37,
Section 3.4.4 (Execution Management), page 57, and Sec-
tion B.4.4), Comirem can be made to generate a sequence
of overlay files at specified time increments so that C2PC
can display the plan as its execution is simulated. C2PC screen shot
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5 Demonstration Problems

As part of the evaluation process for Comirem, two different SOF-type scheduling problem sce-
narios have been developed to help assess its modeling and scheduling capabilities. The first,
Embassy Rescue (developed within the Intelligent Coordination and Logistics Laboratory at
CMU and introduced earlier in Section 3.4, Mixed-Initiative Resource Management), involves
a rescue mission to a U.S. embassy in a foreign country using mainly air assets. The second,
Exotic Dancer (provided by the Active Templates program via the SOFTools Temporal Plan Ed-
itor), involves a synchronized attack on two remote targets using a combination of air, sea and
land assets. Both of these scenarios are described in this section. Section 5.1 presents some
common type definitions shared by both problems. Section 5.2 describes the Embassy Rescue
scenario, and Section 5.3 describes the Exotic Dancer scenario.

One major difference between the two scenarios is the data-loading process. For Embassy
Rescue, the data files are loaded directly without any additional translation. For Exotic Dancer,
however, since the scenario data comes directly from XML output files generated by SOFTools’
Temporal Plan Editor, an additional translation phase must be performed to first generate a
scenario-plan.xml file that is amenable to Comirem. For both scenarios, corresponding situa-
tion data files defining the necessary resource and activity types, capabilities (if necessary), and
resource instances have been established to facilitate system evaluation.

Additional differences between the two scenarios involve: (1) the use of constraints, includ-
ing temporal sequencing constraints and earliest and latest start and finish constraints on activ-
ities, (2) the use of capabilities as a means of connecting required resources to activities, and (3)
the use of both capacitated and uncapacitated place component resources. These differences
are described in greater detail as part of the discussion of each scenario.

5.1 Common Definitions

Both the Embassy Rescue and Exotic Dancer scenarios rely heavily on the use of air assets for
transporting personnel. A shared activity type supports the sourcing of aircraft, and the shared
resource types include an :organic FOOT resource and two common helicopter (i.e., ROTOR)
types.

5.1.1 Activity Types

The RESOURCE-SOURCING wrapper activity type presented in Figure 39 and discussed extensively
in Section 3.2.1.1 (Hierarchical Activity Networks), facilitates the sourcing of available mobile
resources (i.e., aircraft and seacraft) from elsewhere in the environment. The wrapper surrounds
a nexus activity (the :child activity referenced in Figure 39)—typically a move activity of some
sort—with a preceding positioning leg (a move activity) and a succeeding depositioning leg (an-
other move activity) that can be used for the sourcing and return of the resource. The instanti-
ated RESOURCE-SOURCING wrapper will permit Comirem to look for candidate resources accord-
ing to how the actual nexus activity is defined—i.e., based on the values of its resource-origin
and resource-destination variables (specified in its initargs tag). If these variables are set
to specific places or locations, then only resources positioned at, and able to return to those
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locations, are feasible. If these variables are left unbound (i.e., free), then resources from any-
where in the environment may be used.

5.1.2 Resource Types

Figure 40 presents the XML specifications for three resource types shared by the Embassy Rescue
and Exotic Dancer scenarios. The two helicopter types, MH-47 and MH-60, are common SOF air
assets. The FOOT resource is universal, representing movement by foot (and making use of the
:organic model type). In both scenarios, a UNIVERSAL-FOOT resource is instantiated from this
type, providing unlimited capacity.

5.2 Embassy Rescue

As described in Section 3.4 (Mixed-Initiative Resource Management) and illustrated in Fig-
ures 28 (page 48) and 29 (page 49), the Embassy Rescue scenario describes a rescue mission
that culminates in the evacuation of personnel from a U.S. embassy on foreign soil, and con-
sisting of three initially separate threads that converge at the end. The three threads behave as
follows:

1. Defend-Bridge - A taskforce (alpha), deploys to a strategic bridge location within enemy
territory to defend a temporarily enemy-controlled airport against further enemy advance,
before moving to the newly secured airport for final evacuation.

2. Seize-Airport - A taskforce (bravo), deploys to the enemy-controlled airport, overtakes en-
emy forces there, and then prepares for the evacuation of the rescued embassy personnel
and all three taskforces.

3. Evacuate-Embassy - A taskforce (charlie), deploys to the embassy, secures it, and then evac-
uates all personnel to the recently secured airport for final evacuation.

Once all of the personnel and taskforces have assembled at the airport, a single movement
(in multiple waves) evacuates everyone back to the home station. And throughout the main
body of the plan, a single provide-cover-fire activity does precisely that.

The internal representation of this plan is presented in Figure 41, showing all of the activities
and locations, derivative sourcing legs, temporal sequencing constraints, cargo manifests, re-
quired durations and resource requirements. Places in the plan (some of which are repeated for
the sake of clarity) are identified along the y-axis, extending horizontally across the figure. The
10-hour plan horizon extends across the x-axis. Activities are drawn in green (for moves) and
yellow (for events), with derivatives drawn in dark blue. The activities are labeled with boxes
showing their required capability or resource class at the top, the name of the activity in the
middle, and the manifest, taskforce identification, and sometimes the required duration at the
bottom. The temporal sequencing constraints are drawn with red annotated arrows.
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RESOURCE-SOURCING
[aggregate]

DEPOSITIONING

move

POSITIONING

move

Resource Origin

Origin
Resource Destination

Destination

:CHILD

<type>
  <wrapper name="resource-sourcing">
    <variables>resource-origin resource-destination</variables>
    <inputs>origin destination</inputs>
    <decomposition>
      <child-spec name="positioning">
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <slot>resource-origin</slot>
          </initarg>
          <initarg name="destination">
            <keyword>origin</keyword>
          </initarg>
        </initargs>
      </child-spec>
      <child-spec name="depositioning">
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <keyword>destination</keyword>
          </initarg>
          <initarg name="destination">
            <keyword>resource-destination</keyword>
          </initarg>
        </initargs>
      </child-spec>
    </decomposition>
    <constraints>
      <constraint>
        <type-ref>successor</type-ref>
        <from>positioning</from>
        <to>:child</to>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
      <constraint>
        <type-ref>successor</type-ref>
        <from>:child</from>
        <to>depositioning</to>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
    </constraints>
  </wrapper>
</type>

Figure 39: Structure and XML specification of the RESOURCE-SOURCING wrapper activity type
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<type>
  <aircraft name="MH-60">
    <description>
      Black Hawk: infiltration, exfil-
      tration, resupply of special op-
      erations forces, and CSAR
    </description>
    <model-type>ROTOR</model-type>
    <speed units="mph">184</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="14">PAX</cargo>
      </configuration>
      <configuration
        name="close-air-support">
        <cargo max="1">MUNITIONS</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <landcraft name="FOOT">
    <model-type>:organic</model-type>
    <speed units="mph">4</speed>
  </landcraft>
</type>

<type>
  <aircraft name="MH-47">
    <description>
      Chinook: infiltration, exfil-
      tration, air assault, resupply
      and sling operations
    </description>
    <model-type>ROTOR</model-type>
    <speed units="mph">177</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="55">PAX</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

MH-47 MH-60

Figure 40: XML specifications of shared resource types

The Embassy Rescue scenario is notable for a number of reasons, alluded to earlier:

1. Temporal sequencing constraints:

All of the activities in the plan are free to shift temporally within a 10-hour scheduling
horizon. The necessary synchronization of activities is achieved using temporal sequencing
constraints, such as successor, same-start and same-finish, without any ref-hours or
anchors. These constraints also ensure that the provide-cover-fire activity properly
encompasses its dependent plan activities.

2. Capabilities:

A number of the resource requirements for activities in the plan rely on user-defined
domain-specific capabilities (e.g., light-transport, air-drop) instead of specific re-
source classes.

3. Capacitated and uncapacitated place component resources:

Capacity for aircraft at the embassy is provided through two capacitated working-MOG
components (embassy-yard-1 and embassy-yard-2), one of which must be secured by
each aircraft doing any loading or unloading of cargo on the site. Capacity for aircraft
loading and unloading elsewhere in the plan is represented using uncapacitated (i.e., infinite
capacity) components, such as at the enemy airport and home station.

65



Em
ba

ss
y 

Re
sc

ue
:

LO
CA

L
AI

RP
OR

T

LO
CA

L
AI

RP
OR

T

HO
M

E
ST

AT
IO

N

EM
BA

SS
Y

Ho
ur

 0
Re

lea
se

 D
at

e
Ho

ur
 1

0
Du

e 
Da

te

sa
m

e-
st

ar
t

[0
,1

5
]

be
fo

re
[0

,0
]

de
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e]

po
sit

io
ni

ng
-le

g
[s

ou
rci

ng
-m

ov
e]

LO
CA

L
AI

RP
OR

T

BR
ID

GE

ST
AG

IN
G

AR
EA

HO
M

E
ST

AT
IO

N

30
 m

in
.

30
 m

in
.

30
 m

in
.

30
 m

in
.

30
 m

in
.

30
 m

in
.

be
fo

re
[0

,in
t]

de
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e]

Po
sit

io
n

fo
r

In
se

rti
on

[a
irl

ift
]

12
0x

PA
X

lig
ht

-
tra

ns
po

rt

56
xP

AX

As
se

m
bl

e
fo

r F
or

ce
Su

pp
res

sio
n

[e
ve

nt
]

De
pl

oy
to

Br
id

ge
[a

ird
ro

p]

56
xP

AX

air
-d

ro
p

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

Ex
tra

ct
AM

CI
TS

an
d 

Fo
rce

s
[a

irl
ift

]

39
4x

PA
X

he
av

y-
tra

ns
po

rt

de
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e]
be

fo
re

[0
,0

]
be

fo
re

[0
,0

]

de
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e] 56
xP

AX

Re
tre

at
to

Ai
rp

or
t

[m
ov

e]

be
fo

re
[0

,0
]

be
fo

re
[0

,in
t]

HO
M

E
ST

AT
IO

N

ST
AG

IN
G

AR
EA

be
fo

re
[0

,in
t]

64
xP

AX

As
se

m
bl

e
fo

r A
irp

or
t

Se
izu

re
[e

ve
nt

]

De
pl

oy
to

Ai
rp

or
t

[a
ird

ro
p]

64
xP

AX

air
-d

ro
p

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

64
xP

AX

Se
cu

re
Ai

rp
or

t
[e

ve
nt

]

be
fo

re
[0

,in
t]

po
sit

io
ni

ng
-le

g
[s

ou
rci

ng
-m

ov
e]

be
fo

re
[0

,0
]

de
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e]
be

fo
re

[0
,0

]

24
xP

AX

As
se

m
bl

e
fo

r E
m

ba
ssy

Re
sc

ue
[e

ve
nt

]

Ev
ac

ua
te

Em
ba

ss
y

[a
irl

ift
]

27
4x

PA
X

lig
ht

-
tra

ns
po

rt
de

po
sit

io
ni

ng
-le

g
[s

ou
rci

ng
-m

ov
e]

24
xP

AX

Se
cu

re
Em

ba
ss

y
[e

ve
nt

]

De
pl

oy
to

Em
ba

ss
y

[a
ird

ro
p]

24
xP

AX

lig
ht

-
tra

ns
po

rt

AI
R

CO
RR

ID
OR

HO
M

E
ST

AT
IO

N
po

sit
io

ni
ng

-le
g

[s
ou

rci
ng

-m
ov

e]

Pr
ov

id
e

Co
ve

r F
ire

[e
ve

nt
]

5x
FI

RE
PO

W
ER

clo
se

-a
ir-

su
pp

or
t

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

be
fo

re
[0

,0
]

be
fo

re
[0

,0
]

be
fo

re
[0

,0
]

30
 m

in
.

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

be
fo

re
[0

,in
t]

sa
m

e-
fin

ish
[0

,1
5

]

be
fo

re
[0

,in
t]

56
xP

AX

De
fe

nd
ag

ai
ns

t
En

em
y A

dv
.

[e
ve

nt
]

[4
5,

in
t]

64
xP

AX

Pr
ep

ar
e

fo
r

Ex
tra

ct
io

n
[e

ve
nt

]

[3
0,

in
t]

A B

CA
A

A
A

A

B
B

B
B

C
C

C

C
B

ch
ar

li
e

br
av

o

al
ph

a
A CBTa

sk
 Fo

rce
s

Figure 41: Embassy-Rescue activity network
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5.2.1 Activity Types

The Embassy Rescue domain utilizes five activity types: the load-step and unload-step events
for handling cargo, the airlift and airdrop aggregate activities for moving cargo (in this case,
by air), and the event-w-sourcing wrapper activity that is used to represent a patrol activity
such as the aforementioned provide-cover-fire. The following subsections describe these
types in further detail.

5.2.1.1 Cargo Load and Unload

Cargo loading and unloading is handled by means of the load-step and unload-step event
types, respectively. The XML specifications for both are shown in Figure 42. Each basically
requires a sufficient capacity of a working-MOG resource class instance, which refers to an area
of some kind that can accommodate the loading or unloading of cargo from a resource. The
AIRCRAFT cargo type is used (currently) to indicate the maximum capacity of a working-MOG
resource instance (which, in Embassy Rescue, is 1).

<type>
  <event name="load-step">
    <requirements>
      <requirement>
        <resource-class>working-MOG</resource-class>
      </requirement>
    </requirements>
  </event>
</type>

<type>
  <event name="unload-step">
    <requirements>
      <requirement>
        <resource-class>working-MOG</resource-class>
      </requirement>
    </requirements>
  </event>
</type>

Figure 42: XML specification of Embassy-Rescue cargo-[un]loading activity types

5.2.1.2 Airlift

The airlift activity type defines an activity network structure similar to that of the RESOURCE-
SOURCING wrapper described in Section 5.1.1 (Activity Types), except that instead of wrapping
positioning legs around a nexus activity, the airlift activity expands into three subactivities:
a load-step, a basic move, and an unload-step. The working-MOG resource classes required
by the (un)load steps must come from the origin location for load-step, and from the des-
tination location for unload-step. A summary of the airlift activity type is provided in
Figure 43.
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AIRLIFT
[aggregate]

LOAD-STEP

event

MOVE

Origin
Destination

<type>
  <move name="airlift">
    <decomposition>
      <child-spec>
        <type-ref>load-step</type-ref>
        <initargs>
          <initarg name="place"><slot>origin</slot></initarg>
        </initargs>
      </child-spec>
      <child-spec>
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <slot>origin</slot>
          </initarg>
          <initarg name="destination">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </child-spec>
      <child-spec>
        <type-ref>unload-step</type-ref>
        <initargs>
          <initarg name="place">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </child-spec>
    </decomposition>
    <constraints>
      <constraint>
        <type-ref>successor</type-ref>
        <from-type>load-step</from-type>
        <to-type>move</to-type>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
      <constraint>
        <type-ref>successor</type-ref>
        <from-type>move</from-type>
        <to-type>unload-step</to-type>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
    </constraints>
  </move>
</type>

UNLOAD-
STEP
event

Figure 43: Structure and XML specification of the airlift activity type
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5.2.1.3 Airdrop

The airdrop activity type, summarized in Figure 44, defines an activity network nearly identical
to that of airlift, except that the unload-step is removed. The airdrop activity models a
fast-rope style of aerial movement where personnel and/or cargo are deplaned while an aircraft
is still airborne.23

AIRDROP
[aggregate]

LOAD-STEP

event

MOVE

Origin
Destination

<type>
  <move name="airdrop">
    <decomposition>
      <child-spec>
        <type-ref>load-step</type-ref>
        <initargs>
          <initarg name="place"><slot>origin</slot></initarg>
        </initargs>
      </child-spec>
      <child-spec>
        <type-ref>move</type-ref>
        <initargs>
          <initarg name="origin">
            <slot>origin</slot>
          </initarg>
          <initarg name="destination">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </child-spec>
    </decomposition>
    <constraints>
      <constraint>
        <type-ref>successor</type-ref>
        <from-type>load-step</from-type>
        <to-type>move</to-type>
        <ub><interval><minutes>0</minutes></interval></ub>
      </constraint>
    </constraints>
  </move>
</type>

Figure 44: Structure and XML specification of the airdrop activity type

23The term fast-rope describes a rapelling method for deploying troops and equipment by dropping them down
ropes that hang from low-flying rotor aircraft.
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5.2.1.4 Event-w-Resource-Sourcing

The event-w-sourcing activity type is an event with a RESOURCE-SOURCING wrapper (from
Figure 39) that is used to represent a patrol or support mission that involves a stationary orbit
around a fixed location, in which case it can basically be treated as an event occurring at a
single place. The RESOURCE-SOURCING allows the resource to be sourced from elsewhere. The
XML specification for event-w-sourcing is presented in Figure 45.

<type>
  <event name="event-w-sourcing">
    <variables>resource-origin resource-destination</variables>
    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg name="resource-origin">
            <slot>resource-origin</slot>
          </initarg>
          <initarg name="resource-destination">
            <slot>resource-destination</slot>
          </initarg>
          <initarg name="origin"><slot>place</slot></initarg>
          <initarg name="destination"><slot>place</slot></initarg>
        </initargs>
      </wrapper>
    </wrappers>
  </event>
</type>

Figure 45: XML specification of the event-w-sourcing activity type

5.2.2 Activity Instances

Figure 46 presents a sampling of XML specifications for the Embassy Rescue plan of activity
instances (on the right) and the constraint instances (on the left) that link them together.

5.2.3 Resource Types

In addition to the MH-47 and MH-60 aircraft described in Section 5.1.2 (Resource Types), the
Embassy Rescue scenario makes use of three additional aircraft types: the AC-130U, MC-130H
and C-141. It also uses the working-MOG component resource class, as indicated by the load-
step and unload-step activity types shown in Figure 42. The XML specifications for each of
these four resource types are shown in Figure 47.

5.2.4 Capabilities

The capabilities used in the Embassy Rescue scenario are presented in Figure 48.

5.2.5 Resource Instances

The resource instances available for the Embassy Rescue scenario are summarized in Table 9.
The left side of the figure lists all of the mobile resources in the standard Embassy Rescue sit-
uation, indicating how many are available and at what initial location (i.e., place). On the
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right side of the figure, the place components (i.e., those providing working-MOG capacity) are
identified. Note that three places: home-station, local-airport, and staging-area each
provide unlimited working-MOG capacity, while the embassy provides only two units of capacity,
indicating that the processing of aircraft within the embassy is limited to just two aircraft at a
time.

Table 9: Embassy-Rescue resource instances

Resource
Type

Number of
Instances

Initial Location Place
Component

Type Capacity

AC-130U 1 home-station air-corridor

C-141 2 home-station bridge

FOOT � n/a embassy working-MOG 2

MC-130H 5 home-station home-station working-MOG �

MH-47 5 home-station local-airport working-MOG �

MH-60 7 home-station staging-area working-MOG �
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<instance>
  <activity name="evacuate-embassy">
    <type-ref>airlift</type-ref>
    <description>
      transport AmCits to local-airport for extraction
    </description>
    <origin>embassy</origin>
    <destination>local-airport</destination>
    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg name="origin"><slot>origin</slot></initarg>
          <initarg name="destination">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </wrapper>
    </wrappers>
    <requirements>
      <requirement>
        <capabilities>light-transport</capabilities>
      </requirement>
    </requirements>
    <manifest>
      <manifest-entry>
        <cargo count="274">PAX</cargo>
      </manifest-entry>
    </manifest>
  </activity>
</instance>

<instance>
  <activity name="deploy-to-airport">
    <type-ref>airdrop</type-ref>
    <description>
      Deploy Taskforce BRAVO to airport
    </description>
    <origin>staging-area</origin>
    <destination>local-airport</destination>
    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg name="origin"><slot>origin</slot></initarg>
          <initarg name="destination">
            <slot>destination</slot>
          </initarg>
        </initargs>
      </wrapper>
    </wrappers>
    <manifest>
      <manifest-entry>
        <cargo count="64">PAX</cargo>
      </manifest-entry>
    </manifest>
    <requirements>
      <requirement>
        <capabilities>air-drop</capabilities>
      </requirement>
    </requirements>
  </activity>
</instance>

<instance>
  <activity name="secure-airport">
    <type-ref>event</type-ref>
    <description>
      Establish control of local-airport
    </description>
    <place>local-airport</place>
    <duration><interval><hours>2</hours></interval></duration>
  </activity>
</instance>

<instance>
  <constraint>
    <type-ref>before</type-ref>
    <from>deploy-to-airport</from>
    <to>secure-airport</to>
  </constraint>
</instance>

<instance>
  <constraint>
    <type-ref>before</type-ref>
    <from>secure-airport</from>
    <to>
      evacuate-embassy
      retreat-to-airport
      prepare-for-extraction
    </to>
  </constraint>
</instance>

Deploy to Airport

Secure Airport

Evacuate Embassy

Figure 46: XML specifications for select Embassy-Rescue activity and constraint instances
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<type>
  <aircraft name="AC-130U">
    <description>
      Gunship: close air support,
      air interdiction, and force protection
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">374</speed>
    <configurations>
      <configuration name=":default" op="or">
        <cargo max="40">PAX</cargo>
        <cargo max="1">ARMS</cargo>
      </configuration>
      <configuration name="close-air-support">

  <cargo max="5">MUNITIONS</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <aircraft name="C-141">
    <description>
      Starlifter: cargo and troop support
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">500</speed>
    <configurations>
      <configuration name=":default" op="or">

  <cargo max="200">PAX</cargo>
        <cargo max="6">PALLETS</cargo>
      </configuration>
      <configuration name="heavy-transport">
        <cargo max="200">PAX</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <aircraft name="MC-130H">
    <description>
      Combat Talon II: infiltration,
      exfiltration, and resupply of
      special operations forces
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">374</speed>
    <configurations>
      <configuration name=":default" op="or">
        <cargo max="92">PAX</cargo>
        <cargo max="5">PALLETS</cargo>
      </configuration>
      <configuration name="heavy-transport">
        <cargo max="92">PAX</cargo>
      </configuration>
      <configuration name="air-drop">
        <cargo max="64">PAX</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <component name="working-MOG">
    <description>
      Workspace for loading, offloading,
      and servicing aircraft
    </description>
    <configurations>
      <configuration name=":default">
        <cargo max="1">AIRCRAFT</cargo>
      <configuration>
    </configurations>
  </component>
</type>

AC-130U C-141 MC-130H

Figure 47: XML specifications of Embassy-Rescue resource types
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<capability name="heavy-transport">
  <capable-types>MC-130H C-141</capable-types>
  <type-ref>move</type-ref>
</capability>

<capability name="light-transport">
  <capable-types>MH-60 MH-47</capable-types>
  <type-ref>move</type-ref>
</capability>

<capability name="air-drop">
  <capable-types>MH-60 MC-130H</capable-types>
  <type-ref>move</type-ref>
</capability>

<capability name="close-air-support">
  <capable-types>AC-130U MH-60</capable-types>
  <type-ref>move</type-ref>
</capability>

Figure 48: XML specifications of Embassy-Rescue capabilities
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5.3 Exotic Dancer

The Exotic Dancer scenario represents the other end of the spectrum when compared to Em-
bassy Rescue, but it more closely reflects the look and feel of SOF planning/scheduling prob-
lems, owing to its generation by the SOFTools application program. As mentioned earlier, the
Exotic Dancer scenario involves the assault on two separate remote targets. The assault on
Target X begins with an aircraft positioning leg from the home base (i.e., Tampa) to a staging
base (i.e., FSB Black), and then an infiltration leg using MH-47s to carry troops and cargo in
the form of 48 PAX and four HMMWVs. At an in-theater landing zone, the troops and cargo are
dropped, and the attack on Target X proceeds using the HMMWVs. Following the attack, exfil-
tration reverses the steps, using the same resources. During the movements from FSB Black to
Target X, three synchronized support missions are also executed: Escort & Fire Support,
Combat Search & Rescue, and Fire Support (the latter encompassing the final push to Tar-
get X).

The second half of the scenario involves an independent water-based assault on Target Y,
which begins from a ship at sea (i.e., AFSB White). The infiltration towards Target Y involves
two steps, the first using two MK-V boats, which drop their eight troops into two CRRC rafts for
a beach landing at BLS Orange. The final movement to Target Y takes place on foot. Fol-
lowing the assault, the exfiltration again reverses the infiltration steps, and the troops return
to AFSB White. Beginning with the initial movement from AFSB White, an additional Com-
bat Search & Rescue support mission is run, and a Fire Support mission executes during
the attack on Target Y.

The complete Exotic Dancer scenario is summarized in Figure 49, and the entire plan, as
represented within Comirem, is presented in the subsequent three figures. Figure 50 shows
the initial positioning leg from Tampa to FSB Black and the extent of the separate attacks on
Target X and Target Y. Figure 51 shows the full attack on Target X, while Figure 52 shows
the full attack on Target Y.

It is important to reiterate the following points about the Exotic Dancer scenario:

1. It does not include any explicit temporal sequencing constraints. Each activity in the plan
is essentially fixed in time (the start and end times are all linked to one of two ref-hours
for the plan: H and N). The temporal relations between all activities, including those that
follow one another, and those, like the support missions, that encompass others, are all
implicit.

2. It specifies exactly which resources, and precisely how many of each, are required by each
activity in the plan (i.e., Comirem’s capability mechanism is not used). Comirem ignores
its own calculations based on manifest quantities and resource configurations, and in-
stead relies on the numbers provided in the plan (specified using count attributes in the
resource requirements) to determine how many resources to allocate to each activity.

The Exotic Dancer scenario illustrates how Comirem can be used as a feasibility-checking
mechanism for plans generated within a SOFTools-like program, where a planner with signifi-
cant domain knowledge is able to specify a plan that indicates, in detail, what activities will be
executed, and which particular resources will be used. Comirem can then be called to determine
whether the indicated resources are indeed available in sufficient quantity and at the proper lo-
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Figure 49: Exotic Dancer scenario

cations to satisfy the intentions of the planner. In the event that an infeasibility is encountered,
the planner has the option of modifying and resubmitting the plan.

An example of this problem occurs in the Exotic Dancer plan as it currently exists. In the
attack on Target Y, the second leg of the approach by sea using the two CRRC rafts is initially
allotted—by the planner—a duration of 52 minutes. Given the maximum traveling speed of the
CRRC rafts, which according to the domain model is 10 mph, and the required traveling distance
from the Rendezvous Location to BLS Orange, which is 32 miles, Comirem determines that
the movement will actually require 192 minutes of travel time using the CRRCs, and therefore
that there is not enough time for this activity to complete within the planner’s bounds.
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Figure 50: Exotic-Dancer activity network (summary view)
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Figure 51: Exotic-Dancer activity subnetwork (Target X tasks)

78



BEACH LAND-
ING SITE

depositioning-leg
[resource-sourcing]

Exotic Dancer: Target Y subactivities

0500Z
H

0000Z
H-5h

20 OCT 02

2200Z
H-7h

19 OCT 02

1200Z
H+7h

20 OCT 02

H

H

COMBAT SEARCH &
RESCUE: TARGET Y

[event-w/sourcing]

2xMH-60

H

HH

H

H

H

1xAC-130H
FIRE SUPPORT:

TARGET Y
[event-w/sourcing]

before [0,0]

positioning-leg
[resource-sourcing]

before [0,0]

depositioning-leg
[resource-sourcing]

before
[0,0]

positioning-leg
[resource-sourcing]

before
[0,0]

depositioning-leg
[resource-sourcing]

before
[0,0]

before
[0,0]

2xMK-V
TF MK-V
to AFSB
WHITE

[move-w/
sourcing]

8xPAX
2xCRRC

H

H

2xMK-V
TF MK-V
to R. LOC.
[move-w/
sourcing]

8xPAX
2xCRRC

positioning-leg
[resource-sourcing]

FOOT

TF FOOT
to TGT Y
[move]

2xCRRC

8xPAX

TF CRRC
to CRRC
PICKUP
[move]

H

H

FOOT

TF FOOT
to BLS
[move]

2xCRRC

TF CRRC
to BLS
[move]

8xPAX

AFSB WHITE

RENDEZVOUS
LOCATION

CRRC PICKUP

TARGET Y

0600Z 0700Z 0800Z 0900Z 1000Z0100Z 0200Z 0300Z 0400Z2300Z 1100Z

ORBIT:
TARGET Y

FSB BLACK

ORBIT:
TARGET Y

FSB BLACK

Figure 52: Exotic-Dancer activity subnetwork (Target Y tasks)

79



The planner has two sets of options at this point, relying on either modification of the plan
by hand, or the conflict-resolution functionality provided by Comirem, as described in Sec-
tion 3.4.3 (Conflict Analysis and User-Oriented Explanation). The plan-modification options
are as follows:

� Modify the plan by changing the amount of time allotted to the movement involving the
CRRC rafts, to allow enough time to travel the 32 miles from the Rendezvous Location
to BLS Orange.

� Modify the plan by changing the specific locations of the Rendezvous Location and/or
BLS Orange, to shorten the distance between the two places.

� Modify the plan by attaching a different resource requirement to the activity.

The Comirem conflict-resolution options are:

� Override the domain model to accept the viability of the shorter duration, under the as-
sumption that special conditions or other situational knowledge justify it.

� Accept the longer duration determined by Comirem, including any propagated tempo-
ral changes. Note that this is a case where the lack of any explicit temporal sequencing
constraints can be a problem. Comirem has no information with which to assess addi-
tional conflicts that may result from this kind of relaxation. As a result, it becomes the
responsibility of the planner to determine the impact of this action.

� Determine whether any faster resources are available to be allocated to this activity, and
offer them as alternative scheduling options to the user.

Regardless of which option the user ultimately takes, Comirem has provided a valuable ser-
vice in assessing the resource-feasibility of the plan as specified and offering a set of viable
conflict-resolution options.

5.3.1 Activity Types

The only activity type utilized in the Exotic Dancer scenario is the RESOURCE-SOURCING wrapper
(described in Section 5.1.1, Activity Types).

5.3.2 Activity Instances

Figure 53 presents a sampling of XML specifications of Exotic Dancer plan activity instances.
Note the use of count attributes in the requirements tags to dictate how many resource in-
stances are required for each task, and the explicit sourcing locations sent to the RESOURCE-
SOURCING wrapper activity by the FSB-Deployment (top) and CSAR-Target-Y (bottom) activi-
ties.

5.3.3 Resource Types

The Exotic Dancer scenario utilizes the resource types listed in Figure 40, Section 5.1.2 (Resource
Types), page 65, and the additional resource types defined in Figure 54.
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<instance>
  <activity name="M18300-M951819">
    <display-name>CSAR-Target-Y</display-name>
    <type-ref>event</type-ref>
    <capability-type>move</capability-type>
    <description>
      Combat Search and Rescue for Target-Y
    </description>
    <place>P255811</place>
    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg name="resource-origin"><value>P569440</value></initarg>
          <initarg name="resource-destination"><value>P569440</value></initarg>
          <initarg name="origin"><slot>place</slot></initarg>
          <initarg name="destination"><slot>place</slot></initarg>
       </initargs>
      </wrapper>
    </wrappers>
    <requirements>
      <requirement>
        <resource-class count="2">MH-60</resource-class>
      </requirement>
    </requirements>
    <time-bounds-constraints>
      <ref-hour name="H" type="start">
        1035075079
      </ref-hour>
      <ref-hour name="H" type="finish">
        1035123119
      </ref-hour>
    </time-bounds-constraints>
    <duration>
      <interval><seconds>48040</seconds></interval>
    </duration>
  </activity>
</instance>

<instance>
  <activity name="M614077">
    <display-name>FSB-Deployment</display-name>
    <type-ref>move</type-ref>
    <description>
      Deployment from TPA to FSB-Black for Target-X assault
    </description>
    <origin>P852062</origin>
    <destination>P441277</destination>
    <wrappers>
      <wrapper name="resource-sourcing">
        <initargs>
          <initarg name="resource-origin"><value>P852062</value></initarg>
          <initarg name="resource-destination"><value>P852062</value></initarg>
          <initarg name="origin"><slot>origin</slot></initarg>
          <initarg name="destination"><slot>destination</slot></initarg>
        </initargs>
      </wrapper>
    </wrappers>
    <requirements>
      <requirement>
        <resource-class count="4">C-17</resource-class>
      </requirement>
    </requirements>
    <time-bounds-constraints>
      <ref-hour name="N" type="start">
        1034992848
      </ref-hour>
      <ref-hour name="N" type="finish">
        1035055152
      </ref-hour>
    </time-bounds-constraints>
  </activity>
</instance>

<instance>
  <activity name="M901480">
    <display-name>TF-CRRC:BLS-Landing</display-name>
    <type-ref>move</type-ref>
    <description>
      TF-CRRC arrival at BLS-Orange for Target-X assault
    </description>
    <origin>P152969</origin>
    <destination>P484554</destination>
    <requirements>
      <requirement>
        <resource-class count="2">CRRC</resource-class>
      </requirement>
    </requirements>
    <manifest>
      <manifest-entry>
        <cargo count"8">PAX</cargo>
      </manifest-entry>
    </manifest>
    <time-bounds-constraints>
      <ref-hour name="H" type="start">
        1035080990
      </ref-hour>
      <ref-hour name="H" type="finish">
        1035084494
      </ref-hour>
    </time-bounds-constraints>
  </activity>
</instance>

FSB Deployment (from TPA)

TF-CRRC: Landing at BLS

Combat Search & Rescue: Target-Y

Figure 53: XML specifications for select Exotic-Dancer activity instances
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<type>
  <aircraft name="AC-130H">
    <description>
      Gunship: close air support, air
      interdiction, and force protection
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">374</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="10">MUNITIONS</cargo>
      </configuration>
   </configurations>
  </aircraft>
</type>

<type>
  <aircraft name="AH-64">
    <description>
      Apache: attack helicopter
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">374</speed>
    <configurations>
      <configuration name=":default">

  <cargo max="5">MUNITIONS</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <aircraft name="C-17">
    <description>
      Globemaster III: cargo and
      troop transport
    </description>
    <model-type>FIXED-WING</model-type>
    <speed units="mph">500</speed>
    <configurations>
      <configuration name=":default">

  <cargo max="200">PAX</cargo>
      </configuration>
    </configurations>
  </aircraft>
</type>

<type>
  <seacraft name="CRRC">
    <description>
      Combat Rubber Raiding Craft:
      light SOF insertion/exfiltration
    </description>
    <model-type>POWERED</model-type>
    <speed units="mph">10</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="8">PAX</cargo>
      </configuration>
    </configurations>
  </seacraft>
</type>

<type>
  <seacraft name="MK-V">
    <description>
      Special Operations Craft:
      cargo and SOF support
    </description>
    <model-type>POWERED</model-type>
    <speed units="mph">70</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="20">PAX</cargo>
      </configuration>
    </configurations>
  </seacraft>
</type>

<type>
  <landcraft name="HMMWV">
    <description>
      High-Mobility Multipurpose
      Vehicle: light tactical vehicle
    </description>
    <model-type>WHEELED</model-type>
    <speed units="mph">10</speed>
    <configurations>
      <configuration name=":default">
        <cargo max="8">PAX</cargo>
      </configuration>
    </configurations>
  </landcraft>
</type>

top (l-r):
AC-130H
AH-64
C-17 bottom:

CRRC
MK-V

HMMWV

Figure 54: XML specifications of Exotic-Dancer resource types
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5.3.4 Resource Instances

All of the place instances in Exotic Dancer exist solely to serve as named locations in the plan
(i.e., for calculating travel distances), which is to say, there are no accompanying component
resources (like working-MOG). The mobile resources are also apportioned in such a way as to
facilitate a feasible solution. For completeness’ sake, a description of the Exotic Dancer resource
instances is included in Table 10.

Table 10: Exotic-Dancer resource instances

Resource
Type

Number of
Instances

Initial Location

Aircraft AC-130H 1 Tampa (TPA)

2 FSB Black

AH-64 4 FSB Black

C-17 4 Tampa (TPA)

MH-47 5 FSB Black

MH-60 3 FSB Black

Seacraft CRRC 2 Rendezvous Location

MK-V 2 AFSB White

Landcraft HMMWV 4 Objective Landing Zone

Organic Infantry 20 Tampa (TPA)

FOOT � n/a
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definition of multiple configurations for a resource, an extension that would allow it to instan-
tiate derivative setup operations to perform necessary configuration changes (with situation-
specific processing durations) would require very little in the way of additional mechanisms and
make Comirem more widely applicable to manufacturing-like problem domains.

6.1.7 Abstract Resource Allocation

Assignment of resources ought to be possible at any level in the Comirem resource-requirement
hierarchy (see Figure 16, Section 3.2.2.1 (The Resource Requirement Hierarchy), page 29). For
example, it should be possible to commit to a ROTOR aircraft for a given activity and later refine
this choice to a specific helicopter type (i.e., MH-60). The system should also be capable of rea-
soning with these abstract partial assignments. That is, if a (partial) assignment is made at the
level of a basic air capability (e.g., an ISR asset) and there are no ISR assets available over the
period of time during which it is needed, then the system should recognize this problem. Prop-
agation of resource constraints in this example must be capable of isolating the set of instances
that could provide this capability and confirming availability of at least one instance. More gen-
erally, the system should be capable of maintaining and reasoning with a plan/schedule that
contains resource assignments or partial assignments at different levels of specificity. Going one
step further, it should be possible for the system to recognize situations where user decisions
have sufficiently constrained remaining choices such that only one unique alternative exists at
some level. In these cases the system should proceed to make this unique assignment—which
could still be a partial one, and which the interface should make clear is a derived choice.

6.2 Scheduling Issues

A great opportunity exists in Comirem for enhancing the scheduling engine by opening it up
to accepting additional input from the user. We are interested generally in the design of user-
directed strategies for flexible-times scheduling, including allowing the user to specify relaxable
constraints and objective criteria to drive the scheduler. Users ought to be able to specify pref-
erences for the tightness of various constraints during the scheduling process, and dictate high-
level goals for the overall schedule (or perhaps just portions of the schedule), such as lowest
risk, lowest cost or shortest makespan.

We are also currently in the process of investigating extensions to facilitate explicit goal-
directed reasoning about the resource-support plans required to enable various resource as-
signments (see [Smith and Zimmerman, 2004]).

6.3 Planning Issues

A major area of continuing interest for Comirem is the enhancement of its planning capabilities.
We envision providing direct interactive support for creating and manipulating activities and
activity networks through the GUI to extend Comirem’s forms-based mixed-initiative approach
further into the realm of planning.

Users ought to be able to create activity networks (perhaps in a fashion similar to that of
SOFTools/SOFPlan) and augment/modify existing networks using active-forms-style GUI tem-
plates. Moves can be defined by establishing temporal links (i.e., using a drag-and-drop opera-
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<requirements>
<requirement><resource-class> R1 </resource-class></requirement>
<requirement><resource-class> R2 </resource-class></requirement>
<requirement><resource-class> R3 </resource-class></requirement>

</requirements>

the assumption of the scheduler is that an instance of each of resource class R1, R2 and R3
must be reserved for the duration of the activity. One obvious extension to this format would
be to add a logical operator attribute to the <requirements> tag that would indicate how
the constituent requirements are to be interpreted (i.e., using either an and or or). In the case
of an or operator, as in <requirements operator="or">� � �</requirements>, the scheduler
would need only reserve an instance of one of the Rn to satisfy the needs of the activity. Further
extensions could be made to support an even richer resource-requirement logic, using nested
combinations of and and or operators.24

6.1.4 Consumable Resources

Consumable commodities (e.g., fuel, munitions, money) are not currently supported by Comi-

rem. The work of Laborie (see above) again offers useful techniques for representing and man-
aging consumable resources that could be used to extend the Comirem resource model.

6.1.5 Producer and Consumer Relations

An additional class of resource-usage constraints not yet handled by Comirem is the producer-
consumer relation. For example, in transshipment contexts, where cargos are being moved to
intermediate locations and then reconstituted for subsequent movement elsewhere, the relative
carrying capacities of the resources involved at each stage may allow execution of respective
activities to be overlapped, thereby reducing the overall movement duration. By adding some
additional constraints to govern the repackaging of cargo, the sequencing of multiple-wave
activities can be controlled at a much finer level of detail.

Producer and consumer relations can also play an important role in more heavily planning-
related situations, like those involving the development of a product, as in an ISR, manufactur-
ing or workflow environment. Sequencing constraints defined as producer-consumer links allow
a system to respond to execution results with greater flexibility. For example, when a product
does not meet specifications, the system may be able to iteratively modify and/or reschedule the
original production steps or seek other avenues for securing satisfactory product.

6.1.6 Situation-dependent Setup Operations

The concept of situation-dependent resource setup operations is a short logical step from that
of derivative (de)positioning legs for mobile resources. Given that Comirem already supports the

24It should be reiterated that the model-type in the resource-requirement hierarchy already provides a degree of
or functionality by allowing multiple resource classes to be grouped together into a single class. For example, a
reference to the ROTOR model-type in a resource requirement permits Comirem to allocate either an MH-47 or MH-60
helicopter to an activity.
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definition of multiple configurations for a resource, an extension that would allow it to instan-
tiate derivative setup operations to perform necessary configuration changes (with situation-
specific processing durations) would require very little in the way of additional mechanisms and
make Comirem more widely applicable to manufacturing-like problem domains.

6.1.7 Abstract Resource Allocation

Assignment of resources ought to be possible at any level in the Comirem resource-requirement
hierarchy (see Figure 16, Section 3.2.2.1 (The Resource Requirement Hierarchy), page 29). For
example, it should be possible to commit to a ROTOR aircraft for a given activity and later refine
this choice to a specific helicopter type (i.e., MH-60). The system should also be capable of rea-
soning with these abstract partial assignments. That is, if a (partial) assignment is made at the
level of a basic air capability (e.g., an ISR asset) and there are no ISR assets available over the
period of time during which it is needed, then the system should recognize this problem. Prop-
agation of resource constraints in this example must be capable of isolating the set of instances
that could provide this capability and confirming availability of at least one instance. More gen-
erally, the system should be capable of maintaining and reasoning with a plan/schedule that
contains resource assignments or partial assignments at different levels of specificity. Going one
step further, it should be possible for the system to recognize situations where user decisions
have sufficiently constrained remaining choices such that only one unique alternative exists at
some level. In these cases the system should proceed to make this unique assignment—which
could still be a partial one, and which the interface should make clear is a derived choice.

6.2 Scheduling Issues

A great opportunity exists in Comirem for enhancing the scheduling engine by opening it up
to accepting additional input from the user. We are interested generally in the design of user-
directed strategies for flexible-times scheduling, including allowing the user to specify relaxable
constraints and objective criteria to drive the scheduler. Users ought to be able to specify pref-
erences for the tightness of various constraints during the scheduling process, and dictate high-
level goals for the overall schedule (or perhaps just portions of the schedule), such as lowest
risk, lowest cost or shortest makespan.

We are also currently in the process of investigating extensions to facilitate explicit goal-
directed reasoning about the resource-support plans required to enable various resource as-
signments (see [Smith and Zimmerman, 2004]).

6.3 Planning Issues

A major area of continuing interest for Comirem is the enhancement of its planning capabilities.
We envision providing direct interactive support for creating and manipulating activities and
activity networks through the GUI to extend Comirem’s forms-based mixed-initiative approach
further into the realm of planning.

Users ought to be able to create activity networks (perhaps in a fashion similar to that of
SOFTools/SOFPlan) and augment/modify existing networks using active-forms-style GUI tem-
plates. Moves can be defined by establishing temporal links (i.e., using a drag-and-drop opera-
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tion) between two locations; events can be defined similarly by specifying a temporal interval at
a single location. Sequencing constraints, similar to moves, are temporal links (perhaps anno-
tated) between activities. Finally, the XML specification for an activity type ought to be derivable
directly from existing instantiations, for future use in other plans.

6.4 Architectural Issues

Comirem’s lightweight client/server design provides the basis for a number of possible exten-
sions towards supporting a fully multi-user planning and scheduling environment. As shown in
Figure 55, a single Comirem server could manage one or more planning/scheduling scenarios
for multiple clients, with access controlled through locking and/or other mechanisms. Issues
related to the synchronization of multiple modifications to the same scenario would need to
be addressed formally or prevented outright. Additionally, the client/server design provides the
means for supporting message passing between clients (e.g., users working on related scenarios
or different parts of the same scenario) and even the dynamic modular configuration of plan-
ning/scheduling clients, where users would be able to tailor their own client environment based
on their individual needs or context and thereby minimize even further the total footprint of
their application and its impact on the server.

Internet/LAN Connection

Clients

Comirem Scheduler Server

Client Messages:
• scheduling requests
• scheduling queries

Server Messages:
• scheduling results
• schedule changes

Figure 55: Comirem multi-user client/server environment
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A Input Data Specifications

This appendix provides the complete XML specification grammar for each of the data elements
that can appear in a Comirem input data file. It is organized into five sections, covering basic
support entities (including constraints), activities (types and instances), resources (types and
instances), capabilities, and plan configurations.

Figure 56 displays an XML-centered layout of the input data files that comprise a situation
(i.e., the types, capabilities and instances files on the left) and scenario (i.e., the plan
file on the right) in Comirem, as introduced in Figure 1, Section 3.1 (Representation of SOF
Domains), page 8.

situation-types.xml

<typeFile>

resource types

</typeFile>

situation-capabilities.xml

<capabilityFile>

capability instances

</capabilityFile>

situation-instances.xml

<instanceFile>

resource instances

situation-specific place instances

</instanceFile>

scenario-plan.xml

<planFile name= “scenario-name” >

plan-configuration

<instances>

scenario-specific place instances

activity instances

constraint instances

</instances>

</planFile>

Figure 56: Comirem input file format description

A.1 Supporting Entities

The supporting entities described in this section facilitate the specification of temporal, ge-
ographic, cargo and constraint information. These entities are referenced by multiple other
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Comirem data entities in the process of representing an input situation or scenario.

A.1.1 Time Formats

The time formats in this section match those described in Active Templates program document
number 1: Representing Temporal Data in the Structured Data Model (see [Lafferty, 2001b]).

The basic temporal specifications in Comirem cover both absolute times and time intervals.
Absolute times are used for specifying release and due dates and constraining activity start and
end times. Time intervals are used in the specification of upper and lower temporal bounds
on both constraints and durations. A specific duration entity is provided for specifying mini-
mum/maximum ranges and fixed time points for activity durations.

A.1.1.1 Absolute Time

Absolute time in Comirem can be specified as a calendar date with an optional clock time (to
thousandths of a second), either in Zulu time or offset from Zulu time by some number of hours
and/or minutes. The time specification format is presented in Table 11.

Table 11: Time specification format

Grammar for time-spec

time-spec � CCYYMMDD ‘T’ hhmmss [‘.’sss ] [ ( zulu-suffix � offset-suffix ) ]

CC the century component of a year; range: [00,99]

YY the tens and units components of a year; range: [00,99]

MM a month; range: [01,12]

DD a day; range: �01�

��������
�������

28 � MM � 02 � CCYY �� leap year

29 � MM � 02 � CCYY � leap year

30 � MM � �04,06,09,11�

31 � MM � �01,03,05,07,08,10,12�

��������
�������

�

hh an hour; range: [00,23]

mm minutes; range: [00,59]

ss seconds; range: [00,59]

sss thousandths of a second; range: [000,999]

zulu-suffix � ‘Z’ Designates Zulu time (the default is local)

offset-suffix � (‘�’ � ‘	’) hhmm Designates an offset from Zulu time
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A.1.1.2 Intervals

Time intervals are blocks of time specified in terms of standard time units (e.g., seconds, min-
utes, hours), as well as the system-defined values: :infinity (i.e., an unbounded positive
amount of time) and :negative-infinity (i.e., an unbounded negative amount of time).25

The interval specification format is presented in Table 12.

Table 12: Interval specification format

Grammar for interval-spec

interval-spec � <interval>

time-spec � :negative-infinity � :infinity

� ( <interval-string> interval-string </interval-string> )

</interval>

time-spec � [<seconds> integer </seconds>] [<minutes> integer </minutes>]

[<hours> integer </hours>] [<days> integer </days>]

[<weeks> integer </weeks>] [<months> integer </months>]

[<years> integer </years>]

interval-string � [‘	’] ‘P’ [integer ‘Y’] [integer ‘M’] [integer ‘D’] [ hms-suffix ]

hms-suffix � ‘T’ [integer ‘H’] [integer ‘M’] [( integer � float ) ‘S’]

A.1.1.3 Duration

Durations in Comirem can be specified as either fixed amounts of time or lower and/or upper-
bounded time ranges (i.e., using the interval-spec time-interval format). The duration specifica-
tion format is presented in Table 13.

A.1.2 Geographical Formats

The formats in this section handle such geographical entities as locations, distances and speeds.

A.1.2.1 Locations

The location formats in this section correspond to those described in Active Templates program
document number 2: Representing Geographic Data in the Structured Data Model ([Lafferty, 2001a]).

Locations are represented by latitude/longitude pairs with an optional altitude value. In
the absence of an altitude specification, a location is assumed to be at sea level. Latitude and
longitude values are specified in degrees as floats using a [-]DDD.ddd format, with negative

25Note that the only way (currently) to specify a negative bounded time is to use the interval-string tag.
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Table 13: Duration specification format

Grammar for duration-spec Notes

duration-spec � <duration>

( [min-spec] [max-spec] ) � fixed-spec

</duration>

min-spec � <minimum> interval-spec </minimum> a

max-spec � <maximum> interval-spec </maximum> a

fixed-spec � <fixed> interval-spec </fixed> a

a: for interval-spec grammar, see Table 12, page 91

values implying the southern hemisphere for latitude and the eastern hemisphere for longitude.
Altitudes can be specified in a variety of distance units. The location specification format is
presented in Table 14.

Table 14: Location specification format

Grammar for location-spec Notes

location-spec � <location latitude-spec longitude-spec>

[altitude-spec]

</location>

latitude-spec � longitude�“float”

longitude-spec � latitude�“float”

altitude-spec � <altitude> distance-spec </altitude> a

a: for distance-spec grammar, see Table 15, page 93

A.1.2.2 Distance

Distances can be specified as integers or floats in units of feet, meters, yards, kilometers or miles.
The distance specification format is presented in Table 15.
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Table 15: Distance specification format

Grammar for distance-spec

distance-spec � <distance units�“distance-units” >

integer � float

</distance>

distance-units � feet � meters � yards � kilometers � miles

A.1.2.3 Speed

Speeds can be specified as integers or floats in units of feet-per-second (fps), miles-per-hour
(mph), or knots. The speed specification format is presented in Table 16.

Table 16: Speed specification format

Grammar for speed-spec

speed-spec � <speed units�“speed-units” > integer </speed>

speed-units � fps � mph � knots

A.1.3 Cargo Format

The cargo format serves two purposes: it supports the specification of units of cargo comprising
the manifest for an activity, and an upper bound on resource capacity when defining a resource
configuration. The former case makes use of a count XML attribute, while the latter uses a max
attribute. Comirem provides a predefined set of generic cargo types: PAX (for personnel), FUEL,
MUNITIONS, PALLETS and AIRCRAFT. The cargo specification format is presented in Table 17.

A.1.4 Constraint Formats

Comirem constraint formats cover both temporal sequencing and reference hour constraints.

A.1.4.1 Temporal Sequencing Constraints

Temporal sequencing constraints are used to specify temporal relations among activities within
a plan and among subactivities (i.e., children) of an aggregate activity. Each constraint must

93



Table 17: Cargo specification format

Grammar for cargo-spec

cargo-spec � <cargo [count-spec] [max-spec] > cargo-type </cargo>

count-spec � count� “integer”

max-spec � max� “integer”

cargo-type � PAX � FUEL � MUNITIONS � PALLETS � AIRCRAFT

specify a set of nodes both from which the constraint relation emanates and to which it leads.
When the constraint specifies a relation between subactivities, the from-type and to-type variants
may be used, to take advantage of the fact that subactivities need not be named, and can
therefore be accessed by their type alone—assuming that the type is unique among all of the
(local) subactivities. Also in this case, the special keyword, :child, can be used to refer to a
nexus activity from within a wrapper, since its name cannot be determined until instantiation
time.

The predefined temporal constraint types, as defined in Section 3.2.3.1 (Temporal Sequenc-
ing Constraints), are: successor/before, same-start and same-finish, overlaps and con-
tains. The temporal constraint specification format is presented in Table 18.

A.1.4.2 Reference Hour Constraints

Reference hour constraints are specified at the plan level and used to implement Comirem’s ref-
hours. They attach a name, say P, to a particular point in time fixed to Comirem’s underlying
constraint network’s calendar zero, and may include an optional delta value that specifies a time
window centered around P, i.e., [P	�,P��], from which any time point linked to the ref-hour
can be offset, using an additional value. The values of P, � and the offset can be changed at
any time. If either of these values is modified, each of the time points linked to the ref-hour
must be updated in response. The reference hour constraint specification format is presented
in Table 19.

A.2 Activity Attributes

The various specification formats for activity attributes are presented in this section. Note
that the distinction between type and instance attributes is not strictly defined (or enforced)
in Comirem. That is to say, it is generally permissible to specify any attribute at either the type
or instance level. Attributes specified at the type level will apply to all instances of the type,
and attributes specified at the instance level will override type-level definitions. In this section,
attributes have been grouped according to how they are typically specified in Comirem data
files.
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Table 18: Temporal sequencing constraint specification format

Grammar for constraint-spec Notes

constraint-spec � <constraint>

type-ref-spec from-spec to-spec [lb-spec] [ub-spec]
</constraint>

type-ref-spec � <type-ref> constraint-type-name </type-ref>

constraint-type-name � successor � before � same-start

� same-finish � overlaps � contains

from-spec � <from> [ :child � activity-name ]� </from> a
� <from-type> [ child-type-name ]� </from-type> 
 b

to-spec � <to> [ :child � activity-name ]� </to> a
� <to-type> [ child-type-name ]� </to-type> 
 b

lb-spec � <lb> interval-spec </lb> c
ub-spec � <ub> interval-spec </ub> c


: this tag is not relevant for plan-level constraints, i.e., in the scenario-plan.xml file
a: activity-name must uniquely match a current activity instance (the match must be

with a child activity specified in an accompanying decomposition tag if the con-
straint defines an inter-activity relation)

b: child-type-name must uniquely match a child activity type as specified in an accom-
panying decomposition tag

c: for interval-spec grammar, see Table 12, page 91

As should be expected, activity type and instance names must be unique within a scenario.
The activity type specification format is presented in Table 20, and the activity instance specifi-
cation format is presented in Table 21.
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Table 19: Reference hour constraint specification format

Grammar for ref-hours-spec Notes

ref-hours-spec � <ref-hours> [ref-hour-spec]� </ref-hours>

ref-hour-spec � <ref-hour name�“ref-hour-name” >
<time> ( time-spec � integer ) </time> a
<delta> interval-spec </delta> b

</ref-hour>

a: for time-spec grammar, see Table 11, page 90
b: for interval-spec grammar, see Table 12, page 91
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Table 20: Activity type specification format

Grammar for activity-type-spec Notes

activity-type-spec � <type>

<activity-type-name name�“new-type-name” >
[description-spec]
[variables-spec]
[inputs-spec]
[decomposition-spec] a
[constraints-spec] b
[wrappers-spec] c
[requirements-spec] d
[<derivative-p/>]
[capability-type-spec]

</activity-type-name>
</type>

activity-type-name � wrapper � move � event

description-spec � <description> text </description>

variables-spec � <variables> [symbol]� </variables>

inputs-spec � <inputs> [symbol]� </inputs>

capability-type-spec � <capability-type> ( move � event ) </capability-type>

a: for decomposition-spec grammar, see Table 22, page 99
b: for constraints-spec grammar, see Table 23, page 100
c: for wrappers-spec grammar, see Table 24, page 100
d: for requirements-spec grammar, see Table 26, page 102
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Table 21: Activity instance specification format

Grammar for activity-instance-spec Notes

activity-instance-spec � <instance>

<activity name�“activity-name” >
type-ref-spec [display-name-spec] [time-constraints-spec]
origin-spec destination-spec 
 place-spec �

[initargs-spec] [manifest-spec] [duration-spec] a, b, c
</activity>

</instance>

type-ref-spec � <type-ref> type-name </type-ref> d
display-name-spec � <display-name> text </display-name>

origin-spec � <origin> ( place-name � location-spec ) </origin> e, f
destination-spec � <destination>

( place-name � location-spec ) e, f
</destination>

place-spec � <place> ( place-name � location-spec ) </place> e, f
time-constraints-spec � <time-bounds-constraints>

[ ref-hour-con-spec � anchor-con-spec ]�
</time-bounds-constraints>

ref-hour-con-spec � <ref-hour name�“ref-hour-name” type�“time-point” > g
( time-spec � integer ) h

</ref-hour>

time-point � ( start � finish )
anchor-con-spec � <anchor type�“time-constraint-type” >

( time-spec � integer ) h
</anchor>

time-constraint-type � EST � LST � EFT � LFT


: this option is only relevant for move activity types
�: this option is only relevant for event activity types
a: for initargs-spec grammar, see Table 25, page 101
b: for manifest-spec grammar, see Table 27, page 103
c: for duration-spec grammar, see Table 13, page 92
d: type-name must refer to a predefined activity type
e: place-name must refer to a defined place resource instance
f: for location-spec grammar, see Table 14, page 92
g: ref-hour-name must refer to a predefined ref-hour
h: for time-spec grammar, see Table 11, page 90
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A.2.1 Aggregate Decomposition

The aggregate decomposition specification is typically defined at the type level, to indicate how
an aggregate activity (possibly a wrapper), decomposes into subactivities. Initargs are also
passed to subactivities using this tag. It is only necessary to pass initargs for instance slots
that are relevant to the recipient. Note also, though, that if an initarg for an instance slot is
not passed, its value will be unbound, indicating, in the case of the variables maintained by an
activity (i.e., specified using the <variables> tag), that they are free. For example, if values
for the resource-origin and resource-destination variables maintained by the RESOURCE-
SOURCING wrapper activity are not specified by an invoking activity instance, then a resource
allocated to this activity may be sourced from anywhere.

The aggregate decomposition specification format is presented in Table 22.

Table 22: Aggregate decomposition specification format

Grammar for decomposition-spec Notes

decomposition-spec � <decomposition> [child-spec]� </decomposition>

child-spec � <child-spec [name�“child-name” ]>
type-ref-spec
[initargs-spec] a

</child-spec>

type-ref-spec � <type-ref> child-type-name </type-ref> b

a: for initargs-spec grammar, see Table 25, page 101
b: child-type-name must refer to a predefined activity type

A.2.2 Aggregate Constraints

The aggregate constraint specification, also typically defined at the type level, establishes the se-
quential relationships among the subactivities of an aggregate activity (again, possibly a wrap-
per), using the temporal sequencing constraints described in Section A.1.4.1 (Temporal Se-
quencing Constraints). The aggregate constraint specification format is presented in Table 23.

A.2.3 Wrapper Invocation

The wrapper specification is typically defined at the type level, to expand an activity upward
(i.e., into superactivities). Similarly to the behavior of an aggregate decomposition, initargs are
used to pass slot values up to the wrapper activity instance. The wrapper specification format
is presented in Table 24.
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Table 23: Aggregate constraint specification format

Grammar for constraints-spec Notes

constraints-spec � <constraints> [constraint-spec]� </constraints> a

a: for constraint-spec grammar, see Table 18, page 95

Table 24: Wrapper specification format

Grammar for wrappers-spec Notes

wrappers-spec � <wrappers> [wrapper-spec]� </wrappers>

wrapper-spec � <wrapper name�“wrapper-name” > a
[initargs-spec] b

</wrapper>

a: wrapper-name must refer to a predefined wrapper type
b: for initargs-spec grammar, see Table 25, page 101

A.2.4 Initialization Arguments

As has already been mentioned, initialization arguments (i.e., initargs), are used to pass values
from one activity to another, whether it be from activity to subactivity or from activity to super-
activity. Because Comirem is built on the Common Lisp Object System (CLOS) [Keene, 1989],
the model for initargs reflects the underlying CLOS object model.

Initarg values can be specified in one of three ways:

1. the value of a slot - a slot-name is identified, and the value passed with the initarg is the
value of that slot belonging to the activity that is passing the initarg

2. an explicit value - the value is passed with the initarg

3. a keyword name - a keyword is identified, and the value passed with the initarg is the value
that was paired with the keyword when the activity that is passing the initarg was instan-
tiated

The initarg-name is the name of an initarg that is acceptable to the activity to which the initarg
is being passed. The initarg specification format is presented in Table 25.

100



Table 25: Initialization argument specification format

Grammar for initargs-spec Notes

initargs-spec � <initargs> [initarg-spec]� </initargs>

initarg-spec � <initarg name�initarg-name > a
slot-spec � value-spec � keyword-spec

</initarg>

slot-spec � <slot> slot-name </slot> b
value-spec � <value> value </value> c
keyword-spec � <keyword> keyword </keyword> d

a: initarg-name must be an initarg for the targeted activity instance
b: slot-name must reference either a slot, variable or input of the cur-

rent activity instance
c: value should be a value appropriate for initarg-name
d: keyword must be a keyword provided to the current activity instance

A.2.5 Resource Requirements

Resource requirements can be specified at either the type or instance level. The resource-
requirement specification tells the scheduler what kinds of resources—and how many of each—
must be secured to satisfy an activity. The specification of a capability, model type or resource
class automatically includes all of the selection’s children (and their children, etc.) as candidate
resources with which to satisfy a particular requirement. The optional count attribute allows
the planner to override the default calculation, performed by the scheduler, that determines
how many actual resource instances are required by an activity depending on the nature of its
cargo manifest. For example, a resource type with the capability to handle 100 PALLETS, se-
lected for an activity that has a cargo manifest of 400 PALLETS, will require four instances of
that resource type to be allocated to the activity.

Currently in Comirem, each individual resource requirement represents a requirement that
must be satisfied. If there are two requirements (R1 and R2), then a resource (or resources)
satisfying R1—and—a resource (or resources) satisfying R2 must be secured (i.e., there is an
implied and operator among multiple requirements).

Note that there are additional semantics involved with the modification of resource require-
ments, i.e., through the Comirem GUI. This issue is discussed in Section B.4.1.5.

The resource-requirement specification format is presented in Table 26.

A.2.6 Cargo Manifests

Cargo manifests are generally specified at the instance level. They describe a quantity of cargo
that must be accommodated by an activity’s required resource(s). Absent a count attribute in
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Table 26: Resource requirement specification format

Grammar for requirements-spec Notes

requirements-spec � <requirements> [requirement-spec]� </requirements>

requirement-spec � <requirement [ count� “integer” ] > a
capabilities-spec � resource-class-spec
� model-type-spec � resource-spec

</requirement>

capabilities-spec � <capabilities> [capability-name]� </capabilities> b
resource-class-spec � <resource-class>

[resource-class-name]� c
</resource-class>

model-type-spec � <model-type> [model-type]� </model-type> d
resource-spec � <resource> resource-name </resource> e

a: the optional count attribute overrides the calculation that determines how many resource
instances are required for a particular activity

b: capability-name names a capability (if it does not yet exist, it will be created)
c: resource-class-name must refer to a predefined resource class
d: model-type must refer to a predefined model type
e: resource-name must refer to an existing resource instance (this is not currently supported)

an activity’s resource requirement, the cargo manifest helps drive the calculation to determine
how many resource instances are needed to perform an activity. The cargo manifest specifica-
tion format is presented in Table 27.

A.3 Resource Attributes

The various specification formats for resource attributes are presented in this section. Note that,
as in the case of activities, the distinction between type and instance attributes for resources is
not strictly defined. Again, attributes specified at the type level will apply to all instances of
the type, and attributes specified at the instance level will override type-level definitions. In this
section, attributes have been grouped according to how they are typically specified in Comirem

data files.
As should be expected, resource type and instance names must be unique within a scenario.

The resource type specification format is presented in Table 28, and the resource instance spec-
ification format is presented in Table 29. In the specification of resource instances, note that
only places can have components (capacitated or not), and that places can only be placed at
a location specified by a latitude/longitude pair (i.e., they cannot be treated as components).26

26Note that if a component resource is referenced in a components-spec, it must also be defined separately.
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Table 27: Cargo manifest specification format

Grammar for manifest-spec Notes

manifest-spec � <manifest> [manifest-entry-spec]� </manifest>

manifest-entry-spec � <manifest-entry> cargo-spec </manifest-entry> a

a: for cargo-spec grammar, see Table 17, page 94

Table 28: Resource type specification format

Grammar for resource-type-spec Notes

resource-type-spec � <type>

<resource-type name�“new-type-name” >
[model-type-spec]
[description-spec]
[speed-spec] 
 a

[configurations-spec] b
[capabilities-spec]

</resource-type>
</type>

resource-type � aircraft � landcraft � seacraft

� mobile � place � component

model-type-spec � <model-type> model-type </model-type> c
description-spec � <description> text </description>

capabilities-spec � <capabilities> [capability-name]� </capabilities>


: these options are only relevant for mobile resource types
a: for speed-spec grammar, see Table 16, page 93
b: for configurations-spec grammar, see Table 30, page 105
c: model-type must refer to a predefined model type
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Table 29: Resource instance specification format

Grammar for resource-instance-spec Notes

resource-instance-spec � <instance>

<resource-type name�“resource-name” >
type-ref-spec
placement-spec
[place-only-options] 


[capacity-list-spec] a
</resource-type>

</instance>

resource-type � resource � place � component

type-ref-spec � <type-ref> type-name </type-ref> b
placement-spec � <placement>

location-spec � place-name � c, d
</placement>

place-only-options � [components-spec] [uncapacitated-components-spec] e
components-spec � <components> [component-name]� </components>


: this option is only relevant for place instances
�: this option is not relevant for place instances
a: for capacity-list-spec grammar, see Table 31, page 106
b: type-name must refer to a predefined resource type
c: for location-spec grammar, see Table 14, page 92
d: place-name should refer to a place resource instance
e: for uncapacitated-components-spec grammar, see Table 32, page 107

A.3.1 Configurations

Configuration specifications define the capacity of a resource under different setups (i.e., con-
figurations), and are typically defined at the type level. Each configuration option for a resource
does two things: (1) it links the resource to a capability, and (2) it provides the information
necessary to determine its ability to handle a particular activity based on the activity’s cargo
manifest. As illustrated in Figure 10, Section 3.2.1.3 (Sibling Activities), page 20, and absent a
count attribute appearing in an activity’s resource requirement, the cargo manifest is matched
against the relevant resource configuration—designated by the required capability—to determine
how many instances of a resource are necessary to perform the activity. If no capability is spec-
ified, i.e., the resource requirement instead requests a model type or resource class, then the
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default resource configuration (named :default) is used. If there is no default configuration,
a single instance is assumed to be sufficient.

If more than a single cargo-spec is defined within a configuration, an operator can be specified
to indicate how the multiple cargo-specs should be treated when used to determine the required
number of resources for a particular cargo manifest. There are two operators: :and and :or.27

The use of an operator facilitates a richer representation of configurations, by allowing for the
case where a resource can be set up in such a way as to accommodate different combinations
of cargo at the same time, instead of only one (i.e., configuration C1 can handle a maximum
of 6 PALLETS, while configuration C2 can handle a maximum of 20 PAX and 2 vehicles. If no
operator is specified, the default (i.e., :or) is used.

The configuration specification format is presented in Table 30.

Table 30: Resource configuration specification format

Grammar for configurations-spec Notes

configurations-spec � <configurations>

[configuration-spec]�
</configurations>

configuration-spec � <configuration name-spec [operator-spec] >
[cargo-spec]� a

</configuration>

name-spec � name�( “:default” � “capability-name” ) b
operator-spec � op�( “or” � “and” ) c

a: for cargo-spec grammar, see Table 17, page 94
b: capability-name names a capability (if it does not yet exist, it will be created)
c: the :and operator is not currently supported

27Note that the :and operator is not currently supported by Comirem.
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A.3.2 Capacity

The capacity specification describes the availability of a resource over time, and is generally
defined at the instance level. Capacity is specified as a sequence of (typically) contiguous (but
always non-overlapping) time intervals indicating how many units of a resource are available for
allocation by the scheduler at any point in time. Comirem currently supports the definition of
unitary-capacity, reusable resources, i.e., they provide one unit of capacity and become available for
reuse after completing any service to which they have been allocated. An activity may, however,
require more than a single unit of capacity, in which case multiple resource instances will be
required.

Each capacity interval includes a start-time and end-time tag, the value of which may be a
valid time-spec, or one of the special keywords: :negative-infinity or infinity, which rep-
resent unbounded negative and positive times, respectively.28 The capacity specification format
is presented in Table 31.

Table 31: Capacity specification format

Grammar for capacity-spec Notes

capacity-spec � <capacity-list>

[capacity-interval-spec]�
</capacity-list>

capacity-interval-spec � <capacity-interval>

start-spec end-spec units-spec
</capacity-interval>

start-spec � <start-time>

( time-spec � “:negative-infinity” ) a
</start-time>

end-spec � <end-time>

( time-spec � “:infinity” ) a
</end-time>

units-spec � <units> integer </units> b

a: for time-spec grammar, see Table 11, page 90
b: at the present time, the units integer value must be 1 (one).

28Note that all time intervals must be positive (i.e., :negative-infinity � start-time � end-time � :infinity).
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A.3.3 Uncapacitated Place Components

Uncapacitated place components are generally defined at the instance level, and only for place
resources. Any place resource may provide a bucket of uncapacitated resource capacity, speci-
fied in terms of capabilities, model types and resource classes.

The uncapacitated place component specification format is presented in Table 32.

Table 32: Uncapacitated place components specification format

Grammar for uncapacitated-components-spec Notes

uncapacitated-components-spec � <uncapacitated-components>

capabilities-spec
� resource-class-spec
� model-type-spec

</uncapacitated-components>

capabilities-spec � <capabilities>

[capability-name]� a
</capabilities>

resource-class-spec � <resource-class>

[resource-class-name]� b
</resource-class>

model-type-spec � <model-type>

[model-type]� c
</model-type>

a: capability-name names a capability (if it does not yet exist, it will be created)
b: resource-class-name must refer to a predefined resource class
c: model-type must refer to a predefined model type
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A.4 Capabilities

Capability specifications appear in the situation-capabilities.xml file, and define capabilities
that are linked to resource classes within a particular situation for reference by both the activity
types in that situation and the activity instances in a particular scenario.

The type-ref value of the type-ref-spec entry may be either move or event. The purpose of this
entry is to inform the system about the nature of the capability being defined (i.e., movement
capabilities are for moves, while stationary capabilities are for events).

The capabilities specification format is presented in Table 33.

Table 33: Capability specification format

Grammar for capability-spec Notes

capability-spec � <capability name-spec>
capable-types-spec type-ref-spec

</capability>

name-spec � name�“symbol”
capable-types-spec � <capable-types>

[resource-class-name]� a
</capable-types>

type-ref-spec � <type-ref> ( move � event ) </type-ref>

a: resource-class-name must refer to a predefined resource class
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A.5 Plan Configuration

The plan-configuration specification appears at the start of the scenario-plan.xml file, ahead of
the scenario-specific place, activity and constraint instances. It provides mostly temporal
information about the plan to facilitate its processing by Comirem.

The plan-configuration specification format is presented in Table 34.

Table 34: Plan-configuration specification format

Grammar for plan-configuration-spec Notes

plan-configuration-spec � <configuration>

[display-name-spec]
[calendar-zero-spec]
[calendar-zero-date-spec]
[ref-hours-spec] a
[plan-horizon-spec]
[time-granularity-spec]

</configuration>

display-name-spec � <display-name> text </display-name>

calendar-zero-spec � <calendar-zero> integer </calendar-zero>

calendar-zero-date-spec � <calendar-zero-date>

time-spec b
</calendar-zero-date>

plan-horizon-spec � <plan-horizon> interval-spec </plan-horizon> c
time-granularity-spec � <time-granularity>

time-granularity
</time-granularity>

time-granularity � seconds � minutes � hours � days

a: for ref-hours-spec grammar, see Table 19, page 96
b: for time-spec grammar, see Table 11, page 90
c: for interval-spec grammar, see Table 12, page 91
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B COMIREM User Manual

The Comirem system consists of two components: a server and a client. The server is a self-
contained executable program running a Common Lisp-based, HTTP-compliant web server.
The client is an HTML file that contains an embedded Shockwave application.

B.1 Installation

To install Comirem on a Microsoft Windows-based computer, run the installation program:
COMIREMInstaller.exe. This will install the Comirem system onto your computer (by default,
all files will be placed in the C:�Program Files�Comirem directory) and establish all necessary
environment variables (namely, OZONE HOME).

On an Apple Macintosh or Sun Solaris platform, Comirem is launched from within a Franz
Allegro Common Lisp session, with the necessary Ozone and Comirem code loaded and the
OZONE HOME environment variable properly set.29

B.2 Starting COMIREM

To start Comirem in a Windows environment, execute Comirem.exe. In a Macintosh or Solaris
environment, execute the start-comirem function from inside a properly initialized Common
Lisp session. This will start the server, which is then ready to accept connections on port 8000.30

To run the client, open COMIREM.htm in any Internet browser equipped with an up-to-date
Shockwave plug-in.31

B.3 Running COMIREM

We begin with a description of the buttons at the top of the Activity Network Display (the initial
Comirem display). These buttons, shown in Figure 57, provide basic functionality for operating
the Comirem client.

Figure 57: Comirem GUI navigational buttons

Note that the navigation and ref hour buttons are discussed within the context of the
Activity Network Display, in Sections B.4.1.1 and B.4.1.6, respectively.

29In the absence of an executable file, the source code can be loaded into an Ozone-initialized Lisp environment
using the Ozone-provided load-comirem function.

30Note that when starting from within a Common Lisp session, the function start-comirem accepts a :PORT

keyword argument for specifying the desired port number (which defaults to 8000).
31Note that Netscape version 6.0 does not support Shockwave.

110



B.3.1 SET SERVER Button

The first step is to establish communication between the Comirem client and the server. When
started, the Set Server pop-up window will appear, as shown in Figure 58.32 The default settings
assume that both the server and client are running on the same computer. If this is the case,
leave the default settings unchanged and press apply . If not, set the host ip and port fields to
the IP address and port where the Comirem server is running and then press apply .

Figure 58: Set Server pop-up window

B.3.2 LOAD Button

The next step is to load a scenario and any number of plans. Pressing the load button will
open the Load pop-up window shown in Figure 59. One scenario and any number of plans can
be loaded at any time. Scenarios define the available resource types, capabilities and resource
bed-down information (i.e., available resource and place instances). Plans define the activities,
constraints and plan-specific places that comprise the activity network.33

When the Load pop-up window appears for the first time, only scenarios are listed. Once a
scenario is selected, a list of the plans appropriate for the selected scenario appears in the list on
the right. The scenario and plan(s) that are already loaded are highlighted in red. Any number
of plans may be selected. Selected scenario and plan(s) are highlighted in red. To unselect, click
on any highlighted scenario or plan.

The Load pop-up window provides four menu options for loading data files:

� load from scratch

Loads the selected scenario and plan(s), disposing of any existing context

� adjust plans

Loads the selected plan(s) into the current scenario and removes any deselected plans

32This pop-up window can be accessed at any time by pressing the set server button.
33All scenario and plan files are located in the OZONE HOME/data/comirem directory.
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Figure 59: Load pop-up window

� connect as is

Connects to the server and retrieves the activity network in its current state (this is useful
if the user has closed and then reopened the browser, intending to continue from where
they left off)

� cancel

Exits the Load pop-up window without loading any scenario or plan(s)

B.3.3 SAVE Button

Saving a schedule is not actively supported through the Comirem GUI at this time.

B.3.4 AUTO-ALLOCATE Button

Pressing the auto-allocate button causes the server to attempt to schedule all currently un-
scheduled activities in the currently loaded plan. The server will not schedule any activities with
conflicts (see Section B.4.1).

B.3.5 UNDO Button

As the name implies, the undo button undoes the last action taken by the user and discards
any consequences of that action.

B.4 Client Components

The Comirem GUI client is comprised of four principle displays: the Activity Network Display,
the Resource & Taskforce Manager, the Place Manager, and the Magboard. Access to each
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display is obtained by clicking on its name in the client component selector, which is included
at the bottom of each display and shown in Figure 60.

Figure 60: GUI client component selector

In the remainder of this section, we describe the features of each of these four displays.

B.4.1 Activity Network Display

Once a scenario and plan(s) are loaded, the Activity Network Display is populated with the
collective activity network (i.e., the network comprising all loaded plans) and is automatically
displayed. The Activity Network Display can be presented in two different formats: the (de-
fault) Gantt View described in Section B.4.1.2, and the Vector View described in Section B.4.1.3.
All components of the activity network are colored according to their status, as described in
Section B.4.1.4.

B.4.1.1 NAVIGATION Button

Alternation between the two views of the Activity Network Display is achieved using the Naviga-
tion pop-up window shown in Figure 61, which is reached by clicking on the top-level navigation

button. The magnifying glass buttons zoom in and out on the activity network. To zoom
to the scale at which the entire temporal horizon of the activity network is visible, press the
show all times button. The result of this action only ensures that the entire activity network

fits horizontally in the display—not vertically (i.e., it may still be necessary to scroll up and down
to see activities outside of the screen).

The Viewport displays a miniature version of the entire activity network. Clicking on a point
within it re-centers the Activity Network Display (either the Gantt or Vector View) on that point.
The Viewport utilizes the same color coding as the Activity Network Display. The toggle switch
for alternating between the Gantt View and Vector View is located below the Viewport. Below that,
depending on the current view, is a final option for modifying the display. In the Vector View,
the user can choose between displaying the activity network using earliest finish times (EFTs)
or latest finish times (LFTs, the default). In the Gantt View, the user can choose between an
enhanced and a standard temporal display (this is discussed in Section B.4.1.2).

B.4.1.2 Gantt View

In the Gantt View, shown in Figure 62, each activity and thread in the activity network is repre-
sented by a single horizontal bar. Places are not shown. Threads are represented by purple bars
and only their start and finish times are displayed. The constituent activities of each thread are
displayed underneath it, sorted by start time, and the thread can be collapsed or expanded by
clicking on its name. Within each activity bar, the lighter color represents the overall time win-
dow within which an activity must be completed, and the darker color represents the duration
of the activity. As mentioned above, toggling the rich times button in the Navigation pop-up
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Figure 61: Vector View and Gantt View display panes for the Navigation pop-up window

window switches between an enhanced temporal display and the standard (default) format. In
the enhanced format, each activity bar shows both its earliest and latest start times (also called
“no earlier than” or NET time, and “no later than” or NLT time, respectively), earliest and latest
end times and its minimum and maximum duration, as explained in Figure 63.

B.4.1.3 Vector View

The Vector View of the Activity Network Display is shown in Figure 64. It depicts a basic “plan-
oriented” visualization of an activity network and has been adapted from other current SOF
planning tools. Horizontal bars are used to indicate an activity (or more generally, a sequence of
activities) taking place at a particular location over time, and diagonal bars are used to indicate
movement (or transport) between locations. Threads are currently not displayed in the Vector
View.

B.4.1.4 Color Legend

The color legend for the Activity Network Display is presented in Figure 65.
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Figure 62: Activity Network Display (Gantt View)

Figure 63: Details of the enhanced temporal display in the Gantt View
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Figure 64: Activity Network Display (Vector View)

Figure 65: Activity Network Display color legend
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B.4.1.5 Selected Activity Form

An activity (or thread) can be selected in the Gantt View by clicking on its corresponding bar.
In the Vector View, an activity is selected by positioning the cursor over the desired activity (or
multiple collocated activities), at which point a yellow pop-up menu will appear to the right of
the cursor listing all of the activities within close range. The desired activity is selected by first
clicking and holding down the mouse button to secure the pop-up menu, positioning the cursor
over the name of the desired activity, and finally releasing the mouse button. Figure 66 depicts
the middle step in this process.

Figure 66: Selecting an activity in the Vector View of the Activity Network Display

When an activity or thread is selected, the Selected Activity form at the bottom of the Activity
Network Display is automatically populated with the data for the selected object, as shown in
Figure 67.

Figure 67: Information about a selected activity in the times & information pane of the Selected
Activity form in the Activity Network Display
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The Selected Activity Form consists of five panes to convey information to the user and facilitate
interaction. Each of these panes is accessible using the thumb-toggle interface on the left-hand
side of the form:

� times & information

As shown in Figure 67, this pane conveys all temporal and general information for an
activity or thread. For activities and threads, this includes the start and end times and
a description of the object. For activities, it also includes duration, anchor and ref-hour
constraints, positioning, manifest and actor (i.e., an assigned taskforce) information, and
a pull-down menu of feasible scheduling options. For threads, it also includes a pull-down
menu of feasible taskforce assignments.

An activity can be scheduled by selecting a scheduling option from the available options

pull-down menu. A taskforce can be assigned to a thread using the same menu.

It is possible to override the latest finish time (LFT), or end nlt (i.e., end no later than)
time, of a selected activity by establishing an anchor on that time point. An NLT anchor
further constrains the latest finish time dictated by the underlying temporal network by
introducing a new hard upper-bound constraint fixed at a certain time. To set an anchor,
simply edit the time in the end nlt field and press the edit button. The Activity Net-
work Display, Selected Activity form, and most importantly, the selected activity’s feasible
scheduling options, will all be updated accordingly. When an anchor is set, a small red
anchor icon appears above the end nlt time, as depicted in Figure 68. An anchor can be
removed by clicking on the anchor icon.34

Figure 68: Setting an NLT anchor on a selected activity in the times & information pane of the
Selected Activity form in the Activity Network Display

In the Vector View of the Activity Network Display, anchors are represented by a purple
line/icon extending up from the end of the activity to the anchor time. In the Gantt View,
the length of the bar for the activity is adjusted to account for an anchor (i.e., there is no
special icon).

� resource requirements

The resource requirements pane, depicted in Figure 69, provides the means for interac-
tively modifying the resource requirements for an activity. The feasible scheduling options

34The setting of EST, LST and EFT anchors is not currently supported in the Comirem GUI, although these anchor
types are supported by Comirem itself.
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in the available options pull-down menu can be changed by relaxing or tightening the
requirements in this pane.

Figure 69: Resource requirements for a selected activity in the resource requirements pane of
the Selected Activity form in the Activity Network Display

The feasible scheduling options for an activity are initially constrained by the set of al-
lowable resource classes indicated by the highlighted platforms in this pane. The set of
platforms (i.e., resource classes) is determined by selecting and deselecting capabilities,
models and platforms. (Selected items are highlighted in red italics.) Changes in one
column may affect the selections in other columns. The semantics of this process are as
follows. Referring back to Figure 16, Section 3.2.2.1 (The Resource Requirement Hierar-
chy), page 29, the hierarchy puts capabilities at the top and resource classes (platforms)
at the bottom. Whenever a capability, model or platform is selected (or deselected), its
children are selected (deselected) as well. The highest level at which any item is specified
controls the selection process. If two items at the same level are selected, the union of
their descendents (i.e., platforms and possibly models) is selected. If a selection is made
at a higher level, only its descendents will remain selected. If an item is deselected, its descen-
dents are deselected unless they remain feasible owing to the reapplication of the selection
semantics.

The revert to original requirements button can be used to restore the original resource-
requirement specifications at any time. Similarly, an activity can be scheduled by selecting
a scheduling option from the available options pull-down menu.

� goals & priorities

This pane is intended to allow the user to specify goals and priorities for an activity to
affect its treatment by the scheduler. This feature is not currently supported.

� message history

This pane is intended to provide a history of all decisions and scheduling actions involving
an activity. This feature is not currently supported.

� conflict resolution

It is possible for the server to determine that an activity cannot be completed within the
time constraints defined by the plan given the activity’s specified resource requirements.
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These activities are considered to be in conflict and are displayed in red in the Activity Net-
work Display. For a conflicted activity, the conflict resolution pane, shown in Figure 70,
provides a description for the conflict and the means available for its resolution.

Figure 70: Conflict-resolution options for a selected (conflicted) activity in the conflict resolu-

tion pane of the Selected Activity form in the Activity Network Display

The available resolutions pull-down menu provides a list of available resolution options
for the conflicted activity. When a resolution from this list is selected, the conflict is re-
solved and feasible scheduling options can again be determined for the activity.

B.4.1.6 REF HOUR Button

As described in Section 3.2.3.2 (Reference Hour Constraints), activities can be linked to plan-
specific ref-hours. A ref-hour is centered on a specific point in time, and all activities linked
to it (via their start/end times) share its temporal flexibility. A ref-hour defines preferred times
for an activity, lying within its [EST..LST] and [EFT..LFT] ranges. Referring back to Figure 68
(page 118), note that the link to ref-hour H-2 results in a preferred start time of 1857 and a
preferred end time of 2041 for the selected activity. Not all activities are linked to ref-hours, and
not all plans have ref-hours.

Pressing the ref hour button opens the Ref Hour Configuration pop-up window depicted in
Figure 71. From this window, a ref-hour can be selected to access its time, temporal flexibility,
and all activities linked to it. The time and flexibility of the selected ref-hour can be modified in
the time and flexibility fields, respectively. When the apply button is pressed, all changes are
applied to, and propagated throughout, the activity network.

B.4.1.7 Execution Results

Comirem processes execution results by accepting actual execution times (also referred to as call-
times) in its situation files and interpreting them as hard temporal constraints (i.e., immovable
anchors) on the start/end times of both executed and in-process activities. The latest calltime
determines the value of the current-time clock in Comirem. When calltimes are specified for a
given situation, the plan is considered to be in progress, and the latest calltime is marked in
the Activity Network Display with a vertical red line, as shown in Figure 72. The portion of the
screen to the left of this line is shaded in gray, indicating that all activities executing in this region
are considered to have completed or be in-process.35

35Note that this implements a rather simple model for processing execution results: if a start calltime has not
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Figure 71: Ref Hour Configuration pop-up window

Figure 72: The latest calltime reflected in the Gantt View of the Activity Network Display
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B.4.2 Resource & Taskforce Manager

The Resource & Taskforce Manager provides access to the available resources and taskforces
within a given scenario, to facilitate their creation, viewing and modification. The Resource
& Taskforce Manager provides two separate forms: one for resource-capacity and attribute
manipulation (the Resource Manager) and one for taskforce manipulation (the Taskforce Manager).
Note that currently, the scope of any modifications made using these forms is limited to the
current planning/scheduling session, that is, any changes made here cannot yet be saved to a
file.

B.4.2.1 Resource Manager

The Resource Manager, depicted in Figure 73, provides a form for viewing resource capacity, edit-
ing resource attributes, and creating and deleting resource instances. On the left side of the
form, the available resources column lists all known resources, sorted and indexed by model
and platform. Clicking on any model, platform, or resource causes its capacity line to be dis-
played in the utilization window on the lower right side of the form. The utilization window
displays the entire time horizon for the loaded plan(s), and includes one row for each instance
corresponding to the item (e.g., model, platform, resource) selected. The red blocks represent
used capacity (i.e., indicating existing reservations), while the gray blocks represent available
capacity.

In the upper right side of the form, the resource edit table facilitates the creation, editing
and deletion of individual resource instances. The add button opens a pop-up window into
which the necessary resource-attribute values are entered (concluded by pressing the accompa-
nying apply button). The edit button works similarly, opening the aforementioned pop-up
window with already populated attribute values that can be edited (and again concluded by
pressing the accompanying apply button). (A cancel button is also provided in this pop-up
window to abort a creation or editing event.) The delete button deletes the currently selected
(i.e., highlighted) resource (note: without confirmation). As with all other data-manipulation op-
erations, any creation, edit or deletion may affect the feasible scheduling options for activities
elsewhere in the network.

B.4.2.2 Taskforce Manager

The Taskforce Manager, depicted in Figure 74, provides a form for editing, modifying and deleting
taskforces. As in the Resource Manager, the available resources column on the left side of the
form lists all known resources, organized by model type and resource class. The taskforces

column on the right lists all known taskforces and their existing constituent resources. New
taskforces can be created in the add taskforce window in the lower right corner of the form by
entering a name and pressing the create button. Taskforce manipulation is performed using

been received for an activity by the time its start time (either scheduled or not) has passed, it is assumed to be
executing within its assigned time window; if an end calltime has not been received for an activity by the time
its end time (again, either scheduled or not) has passed, it is assumed to have executed. A more sophisticated
model would allow for activities that have not received their expected calltimes to be rescheduled according to
the presumably tightened situation. Decisions on how to interpret execution results can be expected to differ by
domain and possibly additional environmental factors.
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Figure 73: Resource & Taskforce Manager (Resource Manager Form)

a drag-and-drop approach. To assign a resource to a taskforce, select it with the mouse and
drag it onto the name of the desired taskforce (as depicted in Figure 75). To move a resource
from one taskforce to another, select the resource in the taskforces column and drag it onto
the name of the desired taskforce (also in the taskforces column). This step is depicted in the
left side of Figure 76. To delete a taskforce or remove a resource from a taskforce, select the
resource or taskforce from the taskforces column and drag it to the deletion area immediately
below the taskforces column. This step (for a taskforce deletion) is depicted in the right side of
Figure 76.

The hide resources already assigned to a taskforce radio button located below the avail-

able resources column controls whether resources in the available resources column are dis-
played in that column once they have been assigned to a taskforce. While resources can be
assigned to multiple taskforces whose time windows do not intersect, it is often the case that
resources are assigned to just a single taskforce, in which case the interface can be streamlined
by removing those resources once they have been assigned.
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Figure 74: Resource & Taskforce Manager (Taskforce Manager Form)
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Figure 75: Taskforce management: assigning a (personnel) resource to a taskforce

B.4.3 Place Manager

The Place Manager, depicted in Figure 77, provides a form for viewing place capacity and cre-
ating, editing and deleting places. Similar to the layout of the Resource Manager, this form
includes an available places column on the left side that lists all known places. In the lower
right corner, the utilization window displays the capacity of a selected place. In the upper
right corner, there are two editing forms: one for platform allocation (the platform allocation

table), and another for place capacity (the place capacity table).
The platform allocation table displays the allocation of platform instances to places, or-

ganized by platform-to-place pairings (i.e., there may be multiple rows for each platform and
each place in this table). The add button opens a new table row into which a known platform
name, a known place name and a quantity are entered (concluded by pressing the accompany-
ing apply button). The edit button works similarly, opening a table row with already popu-
lated attribute values that can be edited (and again concluded by pressing the accompanying
apply button). Again, a cancel button aborts either a creation or editing event. The delete

button deletes the currently selected (i.e., highlighted) platform/place entry (again note: without
confirmation).

The place capacity table displays place capacity, organized by place-to-component-typepair-
ings (i.e., there may be multiple rows for each place and each component-type in this table). The
add button opens a new table row into which a known place name, a known component-type

name and a quantity are entered (concluded by pressing the accompanying apply button). An
unconstrained checkbox facilitates the specification of unconstrained component-types. The
edit button works similarly, opening a table row with already populated attribute values that

can be edited (and again concluded by pressing the accompanying apply button). Again, a
cancel button aborts either a creation or editing event. The delete button deletes the cur-
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Figure 76: Taskforce management: (left) modifying a taskforce by deleting a member or moving
it to another taskforce; (right) deleting a taskforce
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Figure 77: Place Manager

rently selected (i.e., highlighted) place/component-type entry (again note: without confirmation).
And again, as with all other data-manipulation operations, any creation, edit or deletion

may affect the feasible scheduling options for activities elsewhere in the network.

B.4.4 Magboard

The Magboard, depicted in Figure 78, is a tool for displaying the location of resources over time.
Places are represented by squares on the grid, which is laid out in a simplified geographic format.
At any point in time, the white (upper) half of a place square contains a list of all resources
currently available at that place, and the gray (lower) half contains a list of all resources currently
in-process at that place. For each in-process resource movement between two places, a blue line
is drawn with a resource icon placed at its current linearly interpolated position between the two
places, according to the schedule. Moving the mouse cursor over a resource icon opens a pop-
up window with more information about the movement, including the number of resources
involved, its origin and destination, the activity involved, and its completion percentage.
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Figure 78: Magboard

Initially, the state of the Magboard reflects the beginning of the time horizon (i.e., time 0).
The state of the plan(s) at a particular time can be displayed by entering the desired time in
the viewed time field and pressing the go to time button or by pressing the play icon button.
Pressing the play icon button begins a stepping process whereby the viewed time field is in-
cremented by 10 minutes every 5 seconds and the Magboard display is updated to reflect the
incremented time until the pause icon button is pressed. To view the location of all resources
at the latest calltime, press the go to latest time button. The viewed time field will be set to
the latest calltime and the Magboard will display the current state at that time.

128



C Abstracts of Research Publications

hyperlink � [Becker and Smith, 2000]
Becker, M.A. and Smith, S.F.
Mixed-Initiative Resource Management: The AMC Barrel Allocator
Proceedings, Fifth International Conference on Artificial Intelligence Planning Systems (AIPS-00),

Breckenridge CO, April 2000

Abstract: In this paper, we describe the Barrel Allocator, a scheduling tool developed for
day-to-day allocation and management of airlift and tanker resources at the USAF Air Mobility
Command (AMC). The system utilizes an incremental and configurable constraint-based search
framework to provide a range of automated and semi-automated scheduling capabilities, in-
cluding generating an initial solution to the fleet assignment problem, selective re-optimization
of resource allocations to incorporate new higher priority missions while minimizing solution
change, merging of previously planned missions to reduce non-productive flying time, and gen-
eration and synchronization of tanker missions to satisfy air refueling requirements. In situations
where all mission requirements cannot be met, the system can generate and compare alternative
constraint relaxation options. The current version of Barrel Allocator will go into operational
use at AMC as a module of Release 2.0 of AMC’s Consolidated Air Mobility Planning System
(CAMPS) in early 2000.

hyperlink � [Cesta, Oddi and Smith, 2000b]
Cesta, A., Oddi, A. and Smith, S.F.
Iterative Flattening: A Scalable Method for Solving Multi-Capacity Scheduling Problems
Proceedings, Seventeenth National Conference on Artificial Intelligence (AAAI-00),

Austin TX, July 2000

Abstract: One challenge for research in constraint-based scheduling has been to produce
scalable solution procedures under fairly general representational assumptions. Quite often,
the computational burden of techniques for reasoning about more complex types of temporal
and resource capacity constraints places fairly restrictive limits on the size of problems that can
be effectively addressed. In this paper, we focus on developing a scalable heuristic procedure
to an extended, multi-capacity resource version of the job shop scheduling problem (MCJSSP).
Our starting point is a previously developed procedure for generating feasible solutions to more
complex, multi-capacity scheduling problems with maximum time lags. Adapting this procedure
to exploit the simpler temporal structure of MCJSSP, we are able to produce a quite efficient so-
lution generator. However, the procedure only indirectly attends to MCJSSP’s objective criterion
and produces sub-optimal solutions. To provide a scalable, optimizing procedure, we propose a
simple, local-search procedure called iterative flattening, which utilizes the core solution gener-
ator to perform an extended iterative improvement search. Despite its simplicity, experimental
analysis shows the iterative improvement search to be quite effective. On a set of reference
problems ranging in size from 100 to 900 activities, the iterative flattening procedure efficiently
and consistently produces solutions within 10% of computed upper bounds. Overall, the con-
cept of iterative flattening is quite general and provides an interesting new basis for designing
more sophisticated local search procedures.
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hyperlink � [Cesta, Oddi and Smith, 2000a]
Cesta, A., Oddi, A. and Smith, S.F.
A Constraint-Based Method For Project Scheduling with Time Windows
Journal of Heuristics, vol. 8, no. 1, January 2002, pp. 109–136

Abstract: This paper presents a heuristic algorithm for solving RCPSP/max, the resource
constrained project scheduling problem with generalized precedence relations. The algorithm
relies, at its core, on a constraint satisfaction problem solving (CSP) search procedure, which
generates a consistent set of activity start times by incrementally removing resource conflicts
from an otherwise temporally feasible solution. Key to the effectiveness of the CSP search pro-
cedure is its heuristic strategy for conflict selection. A conflict sampling method biased toward
selection of minimal conflict sets that involve activities with higher-capacity requests is coupled
with a non-deterministic choice heuristic to guide the base conflict resolution process, and this
CSP search is embedded within a larger iterative-sampling search framework to broaden search
space coverage and promote solution optimization. The efficacy of the overall heuristic algo-
rithm is demonstrated empirically on a large set of previously studied RCPSP/max benchmark
problems.

hyperlink � [Cicirello and Smith, 2001a]
Cicirello, V.A. and Smith, S.F.
Wasp Nests for Self-Configurable Factories
Proceedings, Fifth International Conference on Autonomous Agents (Agents-01),

Montreal Canada, May/June 2001

Abstract: Agent-based approaches to manufacturing scheduling and control have gained in-
creasing attention in recent years. Such approaches are attractive because they offer increased
robustness against the unpredictability of factory operations. But the specification of local co-
ordination policies that give rise to efficient global performance and effectively adapt to chang-
ing circumstances remains an interesting challenge. In this paper, we introduce a new approach
to this coordination problem, drawing on various aspects of a computational model of how
wasp colonies coordinate individual activities and allocate tasks to meet the collective needs
of the nest. We focus specifically on the problem of configuring machines in a factory to best
satisfy (potentially changing) product demands over time. Our system models the set of jobs
queued in front of any given machine as a wasp nest, wherein wasp-like agents interact to form
a social hierarchy and prioritize the jobs that they represent. Other wasp-like agents external
to the nest act as overall machine proxies, and use a model of wasp task allocation behavior to
determine which new jobs should be accepted into the machine’s queue. We show for simple
factories that our multi-agent system achieves the desired effect. For a given job mix, the system
converges to a factory configuration that maximizes overall performance, and as the job mix
changes, the system quickly adapts to a new, more appropriate configuration.

130

http://www.ri.cmu.edu/pub_files/pub2/cesta_a_2000_2/cesta_a_2000_2.pdf
http://www.ri.cmu.edu/pub_files/pub2/cicirello_vincent_2001_2/cicirello_vincent_2001_2.pdf


hyperlink � [Cicirello and Smith, 2001b]
Cicirello, V.A and Smith, S.F.
Improved Routing Wasps for Distributed Factory Control
Proceedings, IJCAI-01 Workshop on AI and Manufacturing: New AI Paradigms for Manufacturing,

Seattle WA, August 2001

Abstract: Agent-based approaches to manufacturing scheduling and control are attractive
because they offer increased robustness against the unpredictability of factory operations. Pre-
viously, we introduced a new approach to coordinating factory routing and scheduling based on
a computational model of wasp behavior. The natural multi-agent system of the wasp colony
is highly effective in self-organizing the allocation of tasks necessary to fulfill the needs of the
nest and has proven useful as an effective model upon which to base our distributed approach
to factory control. In this paper, we improve upon our original formulation of the routing wasp
with the addition of a tournament of dominance contests among routing wasps competing for
the same job. We experimentally evaluate this improved performance.

hyperlink � [Cicirello and Smith, 2001c]
Cicirello, V.A. and Smith, S.F.
Insect Societies and Manufacturing
Proceedings, IJCAI-01 Workshop on AI and Manufacturing: New AI Paradigms for Manufacturing,

Seattle WA, August 2001

Abstract: In this paper, we present examples from the literature of successful problem solv-
ing systems that have been heavily influenced directly from biological studies of insect societies.
Included among these systems are a few of our own. These examples are presented in light of
manufacturing applications and only the tip of the iceberg is touched upon. It is our hope that
the reader will find a new source of inspiration in problem solving tool design; and realize the
potential of coordination mechanisms for multi-agent manufacturing systems inspired by social
insects.

hyperlink � [Cicirello and Smith, 2001d]
Cicirello, V.A. and Smith, S.F.
Randomizing Dispatch Scheduling Policies
Proceedings, AAAI 2002 Fall Symposium Series: Using Uncertainty within Computation,

North Falmouth MA, November 2001

Abstract: The factory is a complex dynamic environment and scheduling operations for such
an environment is a challenging problem. In practice, dispatch scheduling policies are com-
monly employed, as they offer an efficient and robust solution. However, dispatch scheduling
policies are generally myopic, and as such they are susceptible to sub-optimal decision-making.
In this paper, we attempt to improve upon results of such dispatch policies by introducing non-
determinism into the decision-making process, and instead using a given policy as a baseline for
biasing stochastic decisions. We consider the problem of weighted tardiness scheduling with
sequence-dependent setups with unknown arrival times in a dynamic environment, and show
that randomization of state-of-the-art dispatch heuristics for this problem in this manner can
improve performance. Furthermore, we find that the “easier” the problem, the less benefit there
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is from randomization; the “harder” the problem, the more benefit. Our method of randomiza-
tion is based on a model of the way colonies of wasps self-organize social hierarchies in nature.

hyperlink � [Cicirello and Smith, 2002a]
Cicirello, V.A and Smith, S.F.
Distributed Coordination of Resources via Wasp-Like Agents
Proceedings, First International Workshop on Radical Agent Concepts (WRAC-2000),

McLean VA, January 2002

Abstract: Agent-based approaches to scheduling have gained increasing attention in recent
years. One inherent advantage of agent-based approaches is their tendency for robust behav-
ior; since activity is coordinated via local interaction protocols and decision policies, the system
is insensitive to unpredictability in the executing environment. At the same time, such “self-
scheduling” systems presume that a coherent global behavior will emerge from the local inter-
actions of individual agents, and realizing this behavior remains a difficult problem. We draw
on the adaptive behavior of the natural multi-agent system of the wasp colony as inspiration
for decentralized mechanisms for coordinating factory operations. We compare the resulting
systems to the state-of-the-art for the problems examined.

hyperlink � [Cicirello and Smith, 2004]
Cicirello, V.A. and Smith, S.F.
Wasp-like Agents for Distributed Factory Coordination
Journal of Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, May 2004, pp. 237–266

Abstract: Agent-based approaches to manufacturing scheduling and control have gained in-
creasing attention in recent years. Such approaches are attractive because they offer increased
robustness against the unpredictability of factory operations. But the specification of local co-
ordination policies that give rise to efficient global performance and effectively adapt to chang-
ing circumstances remains an interesting challenge. In this paper, we present a new approach to
this coordination problem, drawing on various aspects of a computational model of how wasp
colonies coordinate individual activities and allocate tasks to meet the collective needs of the
nest.

We focus specifically on the problem of configuring parallel multi-purpose machines in a
factory to best satisfy product demands over time. Wasp-like computational agents that we call
routing wasps act as overall machine proxies. These agents use a model of wasp task allocation
behavior, coupled with a model of wasp dominance hierarchy formation, to determine which
new jobs should be accepted into the machine’s queue. If you view our system from a market-
oriented perspective, the policies that the routing wasps independently adapt for their respective
machines can be likened to policies for deciding when to bid and when not to bid for arriving
jobs.

We benchmark the performance of our system on the real-world problem of assigning trucks
to paint booths in a simulated vehicle paintshop. The objective of this problem is to minimize
the number of paint color changes accrued by the system, assuming no a priori knowledge of
the color sequence or color distribution of trucks arriving in the system. We demonstrate that
our system outperforms the bidding mechanism originally implemented for the problem as well
as another related adaptive bidding mechanism.
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hyperlink � [Cicirello and Smith, 2002b]
Cicirello V.A. and Smith, S.F.
Amplification of Search Performance through Randomization of Heuristics
Proceedings, Eighth International Conference on Principles and Practice of Constraint Programming,

Ithaca NY, September 2002

Abstract: Randomization as a means for improving search performance in combinatorial
domains has received increasing interest in recent years. In optimization contexts, it can provide
a means for overcoming the deficiencies of available search heuristics and broadening search in
productive directions. In this paper, we consider the issue of amplifying the performance of a
search heuristic through randomization. We introduce a general framework for embedding a
base heuristic within an iterative sampling process and searching a stochastic neighborhood of
the heuristic’s prescribed trajectory. In contrast to previous approaches, which have used rank-
ordering as a basis for randomization, our approach instead relies on assigned heuristic value.
Use of heuristic value is important because it makes it possible to vary the level of stochasticity
in relation to the discriminatory power of the heuristic in different decision contexts, and hence
concentrate search around those decisions where the heuristic is least informative. To evaluate
the efficacy of the approach, we apply it to a complex, weighted-tardiness scheduling problem.
Taking a state-of-the-art heuristic for this scheduling problem as a starting point, we demon-
strate an ability to consistently and significantly improve on the deterministic heuristic solution
across a broad range of problem instances. Our approach is also shown to consistently outper-
form a previously developed, rank-ordering based approach to randomizing the same heuristic
in terms of percentage of improvement obtained.

hyperlink � [Cicirello, 2003]
Cicirello, V.A.
Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance
Ph.D. Thesis, Technical Report CMU-RI-TR-03-27,

The Robotics Institute, Carnegie Mellon University, July 2003

Abstract: In many combinatorial domains, simple stochastic algorithms often exhibit su-
perior performance when compared to highly customized approaches. Many of these simple
algorithms outperform more sophisticated approaches on difficult benchmark problems; and
often lead to better solutions as the algorithms are taken out of the world of benchmarks and
into the real-world. Simple stochastic algorithms are often robust, scalable problem solvers.

This thesis explores methods for combining sets of heuristics within a single stochastic search.
The ability of stochastic search to amplify heuristics is often a key factor in its success. Heuris-
tics are not, however, infallible and in most domains no single heuristic dominates. It is there-
fore desirable to gain the collective power of a set of heuristics; and to design a search control
framework capable of producing a hybrid algorithm from component heuristics with the abil-
ity to customize itself to a given problem instance. A primary goal is to explore what can be
learned from quality distributions of iterative stochastic search in combinatorial optimization
domains; and to exploit models of quality distributions to enhance the performance of stochas-
tic problem solvers. We hypothesize that models of solution quality can lead to effective search
control mechanisms, providing a general framework for combining multiple heuristics into an
enhanced decision-making process. These goals lead to the development of a search control
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framework, called QD-BEACON, that uses online-generated statistical models of search per-
formance to effectively combine search heuristics. A prerequisite goal is to develop a suitable
stochastic sampling algorithm for combinatorial search problems. This goal leads to the de-
velopment of an algorithm called VBSS that makes better use, in general, of the discriminatory
power of a given search heuristic as compared to existing sampling approaches.

The search frameworks of this thesis are evaluated on combinatorial optimization prob-
lems. Specifically, we show that: 1) VBSS is an effective method for amplifying heuristic perfor-
mance for the weighted tardiness sequencing problem with sequence-dependent setups; 2) QD-
BEACON can enhance the current best known algorithm for weighted tardiness sequencing;
and 3) QD-BEACON and VBSS together provide the new best heuristic algorithm for the con-
strained optimization problem known as RCPSP/max.

hyperlink � [Derthick and Smith, 2004]
Derthick, M. and Smith, S.F.
An Interactive 1D+2D+3D Visualization for Requirements Analysis
Journal of Scheduling 2004 (to appear)

Abstract: In most practical domains, scheduling is not a one-shot generative task of pro-
ducing time and resource assignments for pre-specified sets of requirements and capabilities,
but an iterative process of getting the constraints right. Initial solutions are developed (at some
level of detail) to understand the feasibility of various requirements and the sufficiency of as-
sumed resources. This requirements analysis leads to reassessment of what requirements can
be reasonably met and what resources need to be made available. Changes are made to the
constraints governing requirements and resource availability, and eventually a final schedule is
elaborated. At early stages of this user-driven process, seeing a fully instantiated schedule is less
important than simply knowing whether a feasible schedule exists and, if not, the approximate
magnitude of the shortfalls for different resources and periods of time. To this end, solutions
to relaxed versions of the full scheduling problem can provide helpful guidance.

In this paper, we describe a system that builds on this notion to provide a direct-manipulation
visual interface for requirements analysis and reconciliation. The interface incorporates a 3D
visualization that identifies resource capacity shortfalls in a tractable relaxed version of the prob-
lem, which must necessarily also be shortfalls in the original problem. Our visualization can be
contrasted with common 2D scheduling displays such as Gantt Charts and Closure Graphs,
which are designed for visualizing complete solutions to a given scheduling problem and hence
offer only indirect support for identifying inherently over-constrained regions of the solution
space. Our visualization, alternatively, directly characterizes this underlying constraint space
and provides a direct basis for requirements analysis. An analyst iteratively adjusts problem
constraints and visualizes the resulting (relaxed) problem solution until various mismatches be-
tween resource requirements and resource availability have been satisfactorily reconciled. Once
a reasonable compromise has been found, the same interface can then be used to guide more
detailed scheduling.
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hyperlink � [Kramer and Smith, 2003]
Kramer, L.A. and Smith, S.F.
Maximizing Flexibility: A Retraction Heuristic for Oversubscribed Scheduling Problems
Proceedings, Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),

Acapulco Mexico, August 2003

Abstract: In this paper we consider the solution of scheduling problems that are inherently
over-subscribed. In such problems, there are always more tasks to execute within a given time
frame than available resource capacity will allow, and hence decisions must be made about
which tasks should be included in the schedule and which should be excluded. We adopt a con-
trolled, iterative repair search approach, and focus on improving the results of an initial priority-
driven solution generation procedure. Central to our approach is a new retraction heuristic,
termed max-flexibility, which is responsible for identifying which tasks to (temporarily) retract
from the schedule for reassignment in an effort to incorporate additional tasks into the sched-
ule. The max-flexibility heuristic chooses those tasks that have maximum flexibility for assign-
ment within their feasible windows. We empirically evaluate the performance of max-flexibility
using problem data and the basic scheduling procedure from a fielded airlift mission scheduling
application. We show that it produces better improvement results than two contention-based
retraction heuristics, including a variant of min-conflicts [Minton et.al] with significantly less
search and computational cost.

hyperlink � [Nareyek, Smith and Ohler, 2003]
Nareyek, A., Smith, S.F. and Ohler, C.M.
Integrating Local Search Advice into Refinement Search (Or Not)
Proceedings, CP-03 Third Workshop on Cooperative Solvers in Constraint Programming

(COSOLV 2003),
Kinsale, County Cork, Ireland, September 2003

Abstract: Recent work has shown the promise in using local-search “probes” as a basis for
directing a backtracking-based refinement search. In this approach, the decision about the next
refinement step is based on an interposed phase of constructing a complete (but not necessarily
feasible) variable assignment. This assignment is then used to decide on which refinement to
take, i.e., as a kind of variable- and value-ordering strategy.

In this paper, we further investigate this hybrid search approach. First, we evaluate meth-
ods for improving probe-based guidance, by basing refinement decisions not only on the final
assignment of the probe-construction phase but also on information gathered during the probe-
construction process. Second, we consider the relative strengths of probe-based search control
and search control that is biased by more classically motivated variable- and value-ordering
heuristics (incorporating domain-specific knowledge). The approaches are evaluated on vari-
ous problems from the job-shop scheduling domain.

Our results indicate that — while probe-based search performs better than an uninformed
search — use of domain-specific knowledge proves to be a much more effective basis for search
control than information about constraint interactions that is gained by local-search probes,
and leads to substantially better performance.
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hyperlink � [Smith, 2003]
Smith, S.F.
Is Scheduling a Solved Problem?
Proceedings, First Multi-Disciplinary International Conference on Scheduling:

Theory and Applications (MISTA),
Nottingham UK, September 2003

(An earlier version of this paper appeared in Proceedings, GECCO 2001 Workshop on the Next Ten
Years of Scheduling Research, San Francisco CA, July 2001.)

Abstract: In recent years, scheduling research has had an increasing impact on practical
problems, and a range of scheduling techniques have made their way into real-world applica-
tion development. Constraint-based models now couple rich representational flexibility with
highly scalable constraint management and search procedures. Similarly, mathematical pro-
gramming tools are now capable of addressing problems of unprecedented scale, and meta-
heuristics provide robust capabilities for schedule optimization. With these mounting successes
and advances, it might be tempting to conclude that the chief technical hurdles underlying the
scheduling problem have been overcome. However, such a conclusion (at best) presumes a
rather narrow and specialized interpretation of scheduling, and (at worst) ignores much of the
process and broader context of scheduling in most practical environments. In this note, I argue
against this conclusion and outline several outstanding challenges for scheduling research.

hyperlink � [Smith, Becker and Kramer, 2004]
Smith, S.F., Becker, M.A. and Kramer, L.A.
Continuous Management of Airlift and Tanker Resources: A Constraint-based Approach
Mathematical and Computer Modelling,

Special Issue on Defense Transportation:
Algorithms, models, and Applications for the 21st Century,
vol. 39, nos. 6–8, March 2004, pp. 581–598

Abstract: Efficient allocation of aircraft and aircrews to transportation missions is an im-
portant priority at the USAF Air Mobility Command (AMC), where airlift demand must in-
creasingly be met with less capacity and at lower cost. In addition to presenting a formidable
optimization problem, the AMC resource management problem is complicated by the fact that
it is situated in a continuously executing environment. Mission requests are received (and must
be acted upon) incrementally, and, once allocation decisions have been communicated to the
executing agents, subsequent opportunities for optimizing resource usage must be balanced
against the cost of solution change. In this paper, we describe the technical approach taken to
this problem in the AMC Barrel Allocator, a scheduling tool developed to address this problem
and provide support for day-to-day allocation and management of AMC resources. The system
utilizes incremental and configurable constraint-based search procedures to provide a range of
automated and semi-automated scheduling capabilities. Most basically, the system provides
an efficient solution to the fleet scheduling problem. More importantly to continuous opera-
tions, it also provides techniques for selectively re-optimizing to accommodate higher priority
missions while minimizing disruption to most previously scheduled missions, and for selectively
“merging” previously planned missions to minimize non-productive flying time. In situations
where all mission requirements cannot be met, the system can generate and compare alterna-
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tive constraint relaxation options. The Barrel Allocator technology is currently transitioning into
operational use within AMC’s Tanker/Airlift Control Center (TACC). A version of the Barrel Al-
locator supporting airlift allocation was first incorporated as an experimental module of the
AMC’s Consolidated Air Mobility Planning System (CAMPS) in September 2000. In May 2003,
a new tanker allocation module is scheduled for initial operational release to users as part of
CAMPS Release 5.4.
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Interactive Resource Management in the COMIREM Planner
Proceedings, IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems,

Acapulco Mexico, August 2003

Abstract: In this paper, we describe Comirem, a light-weight, interactive tool for resource
management in continuous planning domains. Comirem is designed for domains where com-
plex, heterogeneous sets of resources are required to execute planned activities and usage must
be synchronized to satisfy complex temporal and spatial constraints. Comirem promotes an
opportunistic planning paradigm, where resource allocation decisions are made and revised
incrementally as plans and availability constraints become known and refined during the plan-
ning process, and as execution deviates from planned behavior. To this end, resources are as-
signed (and re-assigned) via a least-commitment, constraint-posting scheduling procedure. The
Comirem system design follows three basic mixed-initiative principles: (1) that users will want
to make planning and resource allocation decisions at different levels of detail in different cir-
cumstances and correspondingly delegate more or less decision-making responsibility to system
processes in different contexts, (2) that abstract domain models, coupled with graphical visu-
alization can provide an effective basis for communicating decision impact and proposing deci-
sion options, and (3) that incremental, adaptive problem-solving capabilities, which attempt to
localize change whenever possible and appropriate, are central to maintaining continuity in the
planning and resource management process. These principles are used to provide a variety of
tools for mixed-initiative resource allocation, feasibility checking, resource tracking and conflict
resolution.
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Toward the Design of Web-Based Planning and Scheduling Services
Proceedings, ECP-01/PLANET Workshop on Automated Planning and Scheduling Technologies

in New Methods of Electronic, Mobile and Collaborative Work,
Toledo Spain, September 2001

Abstract: This paper introduces COMIREM (Continuous, Mixed-Initiative Resource Man-
agement), a system for collaborative, incremental development of plans and schedules in dy-
namic, resource-constrained domains. COMIREM is designed to provide web-based planning
and scheduling services and is capable of interacting with a variety of interfacing and visual-
ization tools using a standard Internet browser. The objective is to deliver a wide range of
mixed-initiative problem-solving capabilities (e.g., specification of activities and requirements,
commitment/de-commitment of resources, manipulation of problem constraints) through light-
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weight plug-in applications that can be selected according to present circumstances. We present
a summary of the current functionality and an outline of the developing system architecture.
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Zhou, Q. and Smith, S.F.
A Priority-based Preemption Algorithm for Incremental Scheduling with Cumulative Resources
Technical Report CMU-RI-TR-02-19,

The Robotics Institute, Carnegie Mellon University, July 2002

Abstract: When scheduling in dynamic continuous environments, it is necessary to integrate
new tasks in a manner that reflects their intrinsic importance while at the same time minimizing
solution change. A scheduling strategy that re-computes a schedule from scratch each time a
new task arrives will tend to be quite disruptive. Alternatively, a purely non-disruptive scheduling
strategy favors tasks that are already in the schedule over new ones, regardless of respective pri-
orities. In this paper, we consider algorithms that attempt to strike a middle ground. Like a basic
non-disruptive strategy, the algorithm we propose emphasizes incremental extension/revision of
an existing schedule, rather than regeneration of a new schedule from scratch. However, by al-
lowing selective preemption of currently scheduled tasks, our algorithm also gives attention to
the relative importance of new tasks. We consider a specific class of scheduling problems involv-
ing the allocation of cumulative (or multi-capacity) resources. We develop an approach to pre-
emption based on the concept of freeing up a resource area (i.e., time and capacity rectangle)
comparable to the resource requirement of the new task to be scheduled. Through experimen-
tal analysis performed with a previously developed system for air combat operations scheduling,
we demonstrate that our priority-based preemption algorithm is capable of producing results
comparable in solution quality to those obtained by regenerating a new schedule from scratch
with significantly less disruption to the current schedule.

Zhou, Q. and Smith, S.F.
An Efficient Consumable Resource Representation for Scheduling
Proceedings, Third International NASA Workshop on Planning and Scheduling for Space,

Houston TX, October 2002

Abstract: This paper proposes a new capacity representation for consumable resources,
which uses an expanded balanced tree as its data structure. Its efficiency is analyzed and demon-
strated by empirical experiments. Algorithms for the core operations required of a scheduling
system (i.e. check available capacity, allocate capacity and de-allocate capacity) are also pro-
vided and proved to take O�log n� time in the worst case.

�
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